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1 multivariable calculus

1.1 vectors

We start with some definitions. A real number x is positive, zero, or negative and is
rational or irrational. We denote

R = set of all real numbers x (1)

The real numbers label the points on a line once we pick an origin and a unit of length.
Real numbers are also called scalars

Next define
R2 = all pairs of real numbers x = (x1, x2) (2)

The elements of R2 label points in the plane once we pick an origin and a pair of
orthogonal axes. Elements of R2 are also called (2-dimensional) vectors and can be
represented by arrows from the origin to the point represented.

Next define
R3 = all triples of real numbers x = (x1, x2, x3) (3)

The elements of R3 label points in space once we pick an origin and three orthogonal
axes. Elements of R3 are (3-dimensional) vectors. Especially for R3 one might em-
phasize that x is a vector by writing it in bold face x = (x1, x2, x3) or with an arrow
~x = (x1, x2, x3) but we refrain from doing this for the time being.

Generalizing still further we define

Rn = all n-tuples of real numbers x = (x1, x2, . . . , xn) (4)

The elements of Rn are the points in n-dimensional space and are also called (n-
dimensional) vectors

Given a vector x = (x1, . . . , xn) in Rn and a scalar α ∈ R the product is the vector

αx = (αx1, . . . , αxn) (5)

Another vector y = (y1, . . . , yn) can to added to x to give a vector

x+ y = (x1 + y1, . . . , xn + yn) (6)

Because elements of Rn can be multiplied by a scalar and added it is called a vector
space. We can also subtract vectors defining x− y = x+ (−1)y and then

x− y = (x1 − y1, . . . , xn − yn) (7)

For two or three dimensional vectors these operations have a geometric interpreta-
tion. αx is a vector in the same direction as x (opposite direction if α < 0) with length
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Figure 1: vector operations

increased by |α|. The vector x + y can be found by completing a parallelogram with
sides x, y and taking the diagonal, or by putting the tail of y on the head of x and
drawing the arrow from the tail of x to the head of y. The vector x − y is found by
drawing x+ (−1)y. Alternatively if the tail of x− y put a the head of y then the arrow
goes from the head of y to the head of x. See figure 1.

A vector x = (x1, . . . , xn) has a length which is

|x| = length of x =
√
x2

1 + · · ·+ x2
n (8)

Since x−y goes from the point y to the point x, the length of this vector is the distance
between the points:

|x− y| = distance between x and y =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 (9)

One can also form the dot product of vectors x, y in Rn. The result is a scalar given
by

x · y = x1y1 + x2y2 + · · ·+ xnyn (10)

Then we have
x · x = |x|2 (11)
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1.2 functions of several variables

We are interested in functions f from Rn to Rm (or more generally from a subset
D ⊂ Rn to Rm called the domain of the function). A function f assigns to each x ∈ Rn

a point y ∈ Rm and we write
y = f(x) (12)

The set of all such points y is the range of the function.
Each component of y = (y1, . . . , ym) is real-valued function of x ∈ Rn written

yi = fi(x) and the function can also be written as the collection of n functions

y1 = f1(x), · · · , ym = fm(x) (13)

If we also write out the components of x = (x1, . . . , xn), then are function can be
written as m functions of n variables each:

y1 =f1(x1, . . . , xn)

y2 =f2(x1, . . . , xn)

. . .

ym =fm(x1, . . . , xn)

(14)

The graph of the function is all pairs (x, y) with y = f(x). It is a subset of Rn+m.

special cases:

1. n = 1,m = 2 (or m = 3). The function has the form

y1 = f1(x) y2 = f2(x) (15)

In this case the range of the function is a curve in R2.

2. n = 2,m = 1. Then function has the form

y = f(x1, x2) (16)

The graph of the function is a surface in R3.

3. n = 2,m = 3. The function has the form

y1 =f1(x1, x2)

y2 =f2(x1, x2)

y3 =f3(x1, x2)

(17)

The range of the function is a surface in R3.

4. n = 3,m = 3. The function has the form

y1 =f1(x1, x2, x3)

y2 =f2(x1, x2, x3)

y3 =f3(x1, x2.x3)

(18)

The function assigns a vector to each point in space and is called a vector field.
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1.3 limits

Consider a function y = f(x) from Rn to Rm (or possibly a subset of Rn). Let x0 =
(x0

1, . . . x
0
n) be a point in Rn and let y0 = (y0

1, . . . , y
0
m) be a point in Rm. We say that

y0 is the limit of f as x goes to x0, written

lim
x→x0

f(x) = y0 (19)

if for every ε > 0 there exists a δ > 0 so that if |x− x0| < δ then |f(x)− y0| < ε. The
function is continuous at x0 if

lim
x→x0

f(x) = f(x0) (20)

The function is continuous if it is continuous at every point in its domain.

If f, g are continuous at x0 then so are f ± g. If f, g are scalars (i.e. if m = 1) then
the the product fg is defined and continuous at x0. If f, g are scalars and g(x0) 6= 0
then f/g is defined near x0 and and continuous at x0.

1.4 partial derivatives

At first suppose f is a function from R2 to R written

z = f(x, y) (21)

We define the partial derivative of f with respect to x at (x0, y0) to be

fx(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
(22)

if the limit exists. It is the same as the ordinary derivative with y fixed at y0, i.e[
d

dx
f(x, y0)

]
x=x0

(23)

We also define the partial derivative of f with respect to y at (x0, y0) to be

fy(x0, y0) = lim
h→0

f(x0, y0 + h)− f(x0, y0)

h
(24)

if the limit exists. It is the same as the ordinary derivative with x fixed at x0, i.e[
d

dy
f(x0, y)

]
y=y0

(25)
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We also use the notation

fx =
∂z

∂x

(
or

∂f

∂x
or zx

)
fy =

∂z

∂y

(
or

∂f

∂y
or zy

) (26)

If we let (x0, y0) vary the partial derivatives are also functions and we can take
second partial derivatives like

(fx)x ≡ fxx also written
∂

∂x

(
∂z

∂x

)
=
∂2z

∂x2
(27)

The four second partial derivatives are

fxx =
∂2z

∂x2
fxy =

∂2z

∂y∂x

fyx =
∂2z

∂x∂y
fyy =

∂2z

∂y2

(28)

Usually fxy = fyx for we have

Theorem 1 If fx, fy, fxy, fyx exist and are continuous near (x0, y0) (i.e in a little disc
centered on (x0, y0) ) then

fxy(x0, y0) = fyx(x0, y0) (29)

Example: Consider f(x, y) = 3x2y + 4xy3. Then

fx = 6xy + 4y3 fy = 3x2 + 12xy2

fxy = 6x+ 12y2 fyx = 6x+ 12y2 (30)

We also have partial derivatives for a function f from Rn to R written y = f(x1, . . . xn).
The partial derivative with respect to xi at (x0

1, . . . x
0
n) is

fxi(x
0
1, . . . x

0
n) = lim

h→0

f(x0
1, . . . , x

0
i + h, . . . , x0

n)− f(x0
1, . . . x

0
n)

h
(31)

It is also written

fxi =
∂y

∂xi
(32)
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1.5 derivatives

A function z = f(x, y) is said to be differentiable at (x0, y0) if it can be well-approximated
by a linear function near that point. This means there should be constants a, b such
that

f(x, y) = f(x0, y0) + a(x− x0) + b(y − y0) + ε(x, y) (33)

where the error term ε(x, y) is continuous at (x0, y0) and ε(x, y)→ 0 as (x, y)→ (x0, y0)
faster than the distance between the points:

lim
(x,y)→(x0,y0)

ε(x, y)

|(x, y)− (x0, y0)|
= 0 (34)

Note that differentiable implies continuous.
Suppose it is true and take (x, y) = (x0 + h, y0). Then

f(x0 + h, y0) = f(x0, y0) + ah+ ε(x0 + h, y0) (35)

and so
f(x0 + h, y0)− f(x0, y0)

h
= a+

ε(x0 + h, y0)

h
(36)

Taking the limit h→ 0 we see that fx(x0, y0) exists and equals a. Similarly if we take
(x, y) = (x0, y0 + h) we find that fy(x0, y0) exists and equals b.

Thus if f is differentiable then

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + ε(x, y) (37)

where ε satisfies the above condition. The linear approximation is the function

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) (38)

The graph of the linear approximation is a plane called the tangent plane. See figure 2
It is possible that the partial derivatives fx(x0, y0) and fy(x0, y0) exist but still the

function is not differentiable as the following example shows

example. Define a function by

f(x, y) =

{
1 x = 0 or y = 0
0 otherwise

(39)

Then
fx(0, 0) = 0 fy(0, 0) = 0 (40)

But the function cannot be differentiable at (0, 0) since it is not continuous there. It is
not continuous since for example

lim
t→0

f(t, t) = 0 f(0, 0) = 1 (41)

However the following is true:
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Figure 2: tangent plane

Theorem 2 If the partial derivatives fx, fy exist and are continuous near (x0, y0) (i.e
in a little disc centered on (x0, y0)) then f is differentiable at (x0, y0).

problem: Show the function f(x, y) = y3 + 3x2y2 is differentiable at any point and
find the linear approximation (tangent plane) at (1, 1).

solution: This has partial derivatives

fx(x, y) = 6xy2 fy(x, y) = 3y2 + 6x2y (42)

at any point and they are continuous. Thus the function is differentiable. The tangent
plane at (1, 1) is

z =f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1)

=4 + 6(x− 1) + 9(y − 1)

=6x+ 9y − 11

(43)

Next consider a function from Rn to R written y = f(x) = f(x1, . . . , xn). We say f
is differentiable at x0 = (x0

1, . . . x
0
n) if there is a vector a = (a1, . . . , an) such that

f(x) = f(x0) + a · (x− x0) + ε(x) (44)
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where as before

lim
x→x0

ε(x)

|x− x0|
= 0 (45)

If it is true then we find as before that the vector must be

a = (fx1(x
0), . . . , fxn(x0)) ≡ (∇f)(x0) (46)

also called the gradient of f at x0. Thus we have

f(x) = f(x0) + (∇f)(x0) · (x− x0) + ε(x) (47)

Finally consider a function y = f(x) from Rn to Rm. We write the points and the
function as column vectors:

y =

 y1
...
ym

 =

 f1(x)
...

fm(x)

 x =

 x1
...
xn

 (48)

The function is differentiable at x0 is there is an m× n matrix (m rows, n columns) A
such that

f(x) = f(x0) + A(x− x0) + ε(x) (49)

where the error ε(x) ∈ Rm satisfies

lim
x→x0

|ε(x)|
|x− x0|

= 0 (50)

By considering each component separately we find that the ith row of A must be the
the gradient of fi at x0. Thus

A = Df(x0) ≡

 f1,x1(x
0) · · · f1,xn(x0)

...
...

fm,x1(x
0) · · · fm,xn(x0)

 (51)

This matrix Df(x0) made up of all the partial derivatives of f at x0 is the derivative
of f at x0. Thus we have

f(x) = f(x0) +Df(x0)(x− x0) + ε(x) (52)

The derivative is also written

Df ≡

 ∂y1/∂x1 · · · ∂y1/∂xn
...

...
∂ym/∂x1 · · · ∂ym/∂xn

 (53)

10



problem: Consider the function from R2 to R2 given by(
y1

y2

)
=

(
f1(x)
f2(x)

)
=

(
(x1 + x2 + 1)2

x1(x2 + 3)

)
(54)

Find the linear approximation at (0, 0)

solution: The derivative is

Df =

(
∂y1/∂x1 ∂y1/∂x2

∂y2/∂x1 ∂y2/∂x2

)
=

(
2(x1 + x2 + 1) 2(x1 + x2 + 1)

x2 + 3 x1

)
(55)

The linear approximation is

y = f(0) +Df(0)(x− 0) (56)

or (
y1

y2

)
=

(
1
0

)
+

(
2 2
3 0

)(
x1

x2

)
=

(
2x1 + 2x2 + 1

3x1

)
(57)

1.6 the chain rule

If f : Rn → Rm (i.e. f is a function from Rn to Rm) and p : Rk → Rn, then there is a
composite function h : Rk → Rm defined by

h(x) = f(p(x)) (58)

and we also write h = f ◦ p. We can represent the situation by the diagram:

Rk -
p

Rn

?

f

Rm

@
@
@
@Rh

The chain gives a formula for the derivatives of the composite function h in terms
of the derivatives of f and p. We start with some special cases.

k=1,n=2,m=1 In this case the functions have the form

u =f(x, y)

x =p1(t) y = p2(t)
(59)

and the composite is
u = h(t) = f(p1(t), p2(t)) (60)
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Theorem 3 (chain rule) If f and p are differentiable, then so is the composite h = f ◦p
and the derivative is

h′(t) = fx(p1(t), p2(t))p′1(t) + fy(p1(t), p2(t))p′1(t) (61)

The idea of the proof is as follows. Since f is differentiable

h(t+ ∆t)− h(t) =f((p1(t+ ∆t), p2(t+ ∆t))− f(p1(t), p2(t))

=fx(p1(t), p2(t))
(
p1(t+ ∆t)− p2(t)

)
+ fy(p1(t), p2(t))

(
p2(t+ ∆t)− p2(t)

)
+ε(p1(t+ ∆t), p2(t+ ∆t))

(62)

Now divide by ∆t and let ∆t → 0. One has to show that the error term goes to zero
and the result follows.

This form of the chain rule can also be written in the concise form

du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
(63)

But one must keep in mind that ∂u/∂x and ∂u/∂y are to be evaluated at x = p1(t), y =
p2(t). Also note that on the left u stands for the function u = h(t) while on the right
it stands for the function u = f(x, y).

example: Suppose u = x2 + y2 and x = cos t , y = sin t. Find du/dt. We have

du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

=2x(− sin t) + 2y cos t

=2 cos t(− sin t) + 2 sin t cos t

=0

(64)

(This is to be expected since the composite is u = 1).

example: Suppose u =
√

2 + x2 + y2 and x = et , y = e2t. Find du/dt at t = 0. At
t = 0 we have x = 1, y = 1 and so

du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

=
x√

2 + x2 + y2
et +

y√
2 + x2 + y2

2e2t

=
1

2
· 1 +

1

2
· 2 =

3

2

(65)
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k=1,n,m=1 In this case the functions have the form

u = f(x1, . . . xn)

x1 = p1(t), . . . , xn = pn(t)
(66)

and the composite is
u = h(t) = f(p1(t), · · · , pn(t)) (67)

The chain rule says

h′(t) = fx1(p1(t), · · · , pn(t))p′1(t) + · · ·+ fxn(p1(t), · · · , pn(t))p′n(t) (68)

It can also be written
du

dt
=

∂u

∂x1

dx1

dt
+ · · ·+ ∂u

∂xn

dxn
dt

(69)

k=2,n=2,m=2 In this case the functions have the form

u = f1(x, y) v = f2(x, y)

x = p1(s, t) y = p2(s, t)
(70)

and the composite is

u = h1(s, t) = f1(p1(s, t), p2(s, t)) v = h2(s, t) = f2(p1(s, t), p2(s, t)) (71)

Taking partial derivatives with respect to s, t we can use the formula from the case
k=1,n=2,m=1 to obtain

∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s
∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
∂v

∂s
=
∂v

∂x

∂x

∂s
+
∂v

∂y

∂y

∂s
∂v

∂t
=
∂v

∂x

∂x

∂t
+
∂v

∂y

∂y

∂t

(72)

Here derivatives with respect to x, y are to be evaluated at x = p1(s, t), y = p2(s, t).
This can also be written as a matrix product:(

∂u/∂s ∂u/∂t
∂v/∂s ∂v/∂t

)
=

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)(
∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

)
(73)
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These matrices are just the derivatives of the various functions and the last equation
can be written

(Dh)(s, t) = (Df)(p(s, t))(Dp)(s, t) (74)

The last form holds in the general case. If p : Rk → Rn and f : Rn → Rm are
differentiable then the composite function h = f ◦ p : Rk → Rm is differentiable and

(Dh)(x)︸ ︷︷ ︸
m×k matrix

= (Df)(p(x))︸ ︷︷ ︸
m×n matrix

(Dp)(x)︸ ︷︷ ︸
n×k matrix

(75)

In other words the derivative of a composite is the matrix product of the derivatives of
the two elements. All forms of the chain rule are special cases of this equation.

1.7 implicit function theorem -I

Suppose we have an equation of the form

f(x, y, z) = 0 (76)

Can we solve it for z?. More precisely, is it the case that for each x, y in some domain
there is a unique z so that f(x, y, z) = 0? If so one can define an implicit function
by z = φ(x, y). Geometrically points satisfying f(x, y, z) = 0 are a surface and we are
asking whether the surface is the graph of a function.

Suppose there is an implicit function. Then

f(x, y, φ(x, y)) = 0 (77)

Assuming everything is differentiable we can take partial derivatives of this equation.
By the chain rule we have

0 =
∂

∂x
[f(x, y, φ(x, y))] =fx(x, y, φ(x, y)) + fz(x, y, φ(x, y))φx(x, y)

0 =
∂

∂y
[f(x, y, φ(x, y))] =fy(x, y, φ(x, y)) + fz(x, y, φ(x, y))φy(x, y)

(78)

Solve this for φx(x, y) and φy(x, y) and get

φx(x, y) =− fx(x, y, φ(x, y))

fz(x, y, φ(x, y))

φy(x, y) =− fy(x, y, φ(x, y))

fz(x, y, φ(x, y))

(79)
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This can also be written in the form

∂z

∂x
=− ∂f/∂x

∂f/∂z

∂z

∂y
=− ∂f/∂y

∂f/∂z

(80)

keeping in mind that the right side is evaluated at z = φ(x, y).
For this to work we need that ∂f/∂z 6= 0. If this holds and if we restrict attention

to a small region then there always is an implicit function. This is the content of the
following

Theorem 4 (implicit function theorem) Let f(x, y, z) have continuous partial deriva-
tives near some point (x0, y0, z0). If

f(x0, y0, z0) =0

fz(x0, y0, z0) 6=0
(81)

Then for every (x, y) near (x0, y0) there is a unique z near z0 such that f(x, y, z) = 0.
The implicit function z = φ(x, y) satisfies z0 = φ(x0, y0) and has continuous partial
derivatives near (x0, y0) which satisfy the equations (79).

The theorem does not tell you what φ is or how to find it, only that it exists.
However if we take the equations (79) at the special point (x0, y0) we find

φx(x0, y0) =− fx(x0, y0, z0)

fz(x0, y0, z0)

φx(x0, y0) =− fx(x0, y0, z0)

fz(x0, y0, z0)

(82)

and these quantities can be computed.

example: Suppose the equation is

f(x, y, z) = x2 + y2 + z2 − 1 = 0 (83)

which describes the surface of a sphere. Is there an implicit function z = φ(x, y) near
a particular point (x0, y0, z0) on the sphere?

We have the derivatives

fx(x, y, z) = 2x fy(x, y, z) = 2y fz(x, y, z) = 2z (84)
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Then fz(x0, y0, z0) = 2z0 is not zero if z0 6= 0. So by the theorem there is an implicit
function z = φ(x, y) near a point with z0 6= 0 and

∂z

∂x
=− fx

fz
= −x

z
∂z

∂y
=− fy

fz
= −y

z

(85)

This example is special in that we can find the implicit function exactly and so
check these results. The implicit function is

z = ±
√

1− x2 − y2 (86)

with the plus sign if z0 > 0 and the minus sign if z0 < 0. In either case we have the
expected result

∂z

∂x
=± 1

2
(1− x2 − y2)−1/2(−2x) = −x

z
∂z

∂y
=± 1

2
(1− x2 − y2)−1/2(−2y) = −y

z

(87)

If z0 = 0 there is no implicit function near the point as figure 3 illustrates.

problem: Consider the equation

f(x, y, z) = xez + yz + 1 = 0 (88)

Note that (x, y, z) = (0, 1,−1) is one solution. Is there an implicit function z = φ(x, y)
near this point? What are the derivatives ∂z/∂x, ∂z/∂y at (x, y) = (0, 1)?

solution We have the derivatives

fx = ez fy = z fz = xez + y (89)

Then fz(0, 1,−1) = 1 is not zero so by the theorem there is an implicit function. The
derivatives at (0,1) are

∂z

∂x
=− fx

fz
= − ez

xez + y
= −e−1

∂z

∂y
=− fy

fz
= − z

xez + y
= 1

(90)

alternate solution: Once the existence of the implicit function is established we can
argue as follows. Take partial derivatives of xez + yz+ 1 = 0 assuming z = φ(x, y) and
obtain

∂

∂x
: ez + xez

∂z

∂x
+ y

∂z

∂x
=0

∂

∂y
: xez

∂z

∂y
+ z + y

∂z

∂y
=0

(91)
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Figure 3: There is an implicit function near points with z0 6= 0, but not near points
with z0 = 0.

Now put in the point (x, y, z) = (0, 1,−1) and get

e−1 +
∂z

∂x
=0

−1 +
∂z

∂y
=0

(92)

Solving for the derivatives gives the same result.

Some remarks:

1. Why is the implicit function theorem true? Instead of solving f(x, y, z) = 0 for
z near (x0, y0, z0) one could make a linear approximation and try to solve that.
Taking into account that f(x0, y0, z0) = 0 the linear approximation is

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0 (93)

If fz(x0, y0, z0) 6= 0 this can be solved by

z = z0 −
fx(x0, y0, z0)

fz(x0, y0, z0)
(x− x0)− fy(x0, y0, z0)

fz(x0, y0, z0)
(y − y0) (94)
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and this has the expected derivatives. To prove the theorem one has to argue
that since the actual function is near the linear approximation there is an implicit
function in that case as well.

2. Here are some variations of the implicit function theorem

(a) If f(x, y) = 0 one can solve for y = φ(x) near any point where fy 6= 0 and
dy/dx = −fx/fy.

(b) If f(x, y, z) = 0 one can solve for x = φ(y, z) near any point where fx 6= 0
and ∂x/∂y = −fy/fx and ∂x/∂z = −fz/fx

(c) If f(x, y, z, w) = 0 one can solve for w = φ(x, y, z) near any point where
fw 6= 0 and ∂w/∂x = −fx/fw, etc.

3. One can also find higher derivatives of the implicit function. If f(x, y, z) = 0
defines z = φ(x, y) and

φx(x, y) = −fx(x, y, φ(x, y))

fz(x, y, φ(x, y))
(95)

then one can find φxx, φxy by further differentiation.

example: f(x, y, z) = x2 + y2 + z2 − 1 = 0 defines z = φ(x, y) which satisfies

∂z

∂x
= −x

z
(96)

Keeping in mind that z is a function of x, y further differentiation yields

∂2z

∂x2
= −

(
z − x ∂z/∂x

z2

)
= −

(
z − x(−x/z)

z2

)
=
−z2 − x2

z3
(97)

Since x2 + y2 + z2 = 1 this can also be written as (y2 − 1)/z3. Similarly

∂2z

∂x∂y
=
−xy
z3

(98)

1.8 implicit function theorem -II

We give another version of the implicit function theorem. Suppose we have a pair of
equations of the form

F (x, y, u, v) =0

G(x, y, u, v) =0
(99)
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Can we solve them for u, v as functions of x, y? More precisely is it the case that for
each x, y in some domain there is a unique u, v so that the equations are satisfied. If it
is so we can define implicit functions

u =f(x, y)

v =g(x, y)
(100)

If the implicit functions exist we have

F (x, y, f(x, y), g(x, y)) =0

G(x, y, f(x, y), g(x, y)) =0
(101)

Take partial derivatives with respect to x and y and get

Fx + Fufx + Fvgx =0

Gx +Gufx +Gvgx =0

Fy + Fufy + Fvgy =0

Gy +Gufy +Gvgy =0

(102)

These equations can be written as the matrix equations(
Fu Fv
Gu Gv

)(
fx
gx

)
=

(
−Fx
−Gx

)
(
Fu Fv
Gu Gv

)(
fy
gy

)
=

(
−Fy
−Gy

) (103)

Note that the matrix on the left is the derivative of the function

(u, v)→ (F (x, y, u, v), G(x, y, u, v)) (104)

for fixed (x, y). If the determinant of this matrix is not zero we can solve for the partial
derivatives fx, gx, fy, gy. One finds for example

fx =

det

(
−Fx Fv
−Gx Gv

)
det

(
Fu Fv
Gu Gv

) (105)

The determinant of the matrix is called the Jacobian determinant and is given a
special symbol

∂(F,G)

∂(u, v)
≡ det

(
Fu Fv
Gu Gv

)
≡ FuGv − FvGu (106)
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With this notation the equations for the four partial derivatives can be written

∂u

∂x
=− ∂(F,G)

∂(x, v)
/
∂(F,G)

∂(u, v)

∂v

∂x
=− ∂(F,G)

∂(u, x)
/
∂(F,G)

∂(u, v)

∂u

∂y
=− ∂(F,G)

∂(y, v)
/
∂(F,G)

∂(u, v)

∂v

∂y
=− ∂(F,G)

∂(u, y)
/
∂(F,G)

∂(u, v)

(107)

where u = f(x, y), v = g(x, y) on the right. This holds provided ∂(F,G)/∂(u, v) 6= 0
and this is the key condition in the following theorem which guarantees the existence
of the implicit functions.

Theorem 5 (implicit function theorem) Let F,G have continuous partial derivatives
near some point (x0, y0, u0, v0). If

F (x0, y0, u0, v0) =0

G(x0, y0, u0, v0) =0
(108)

and [
∂(F,G)

∂(u, v)

]
(x0, y0, u0, v0) 6= 0 (109)

Then for every (x, y) near (x0, y0) there is a unique (u, v) near (u0, v0) such that
F (x, y, u, v) = 0 and G(x, y, u, v) = 0. The implicit functions u = f(x, y), v = g(x, y)
satisfy u0 = f(x0, y0), v0 = g(x0, y0) and have continuous partial derivative which satisfy
the equations (107).

problem: Consider the equations

F (x, y, u, v) = x2 − y2 + 2uv − 2 =0

G(x, y, u, v) = 3x+ 2xy + u2 − v2 =0
(110)

Note that (x, y, u, v) = (0, 0, 1, 1) is a solution. Are there implicit functions u =
f(x, y), v = g(x, y) near (0, 0)? What are the derivatives ∂u/∂x, ∂v/∂x at (x, y) =
(0, 0)?

solution: First compute

∂(F,G)

∂(u, v)
= det

(
Fu Fv
Gu Gv

)
= det

(
2v 2u
2u −2v

)
= −4(u2 + v2) = −8 (111)
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Since this is not zero the implicit functions exist by the theorem. We also compute

∂(F,G)

∂(x, v)
= det

(
Fx Fv
Gx Gv

)
= det

(
2x 2u

3 + 2y −2v

)
= −4xv − 2u(3 + 2y) = −6

(112)

and

∂(F,G)

∂(u, x)
= det

(
Fu Fx
Gu Gx

)
= det

(
2v 2x
2u 3 + 2y

)
= 2v(3 + 2y)− 4ux = 6 (113)

Then
∂u

∂x
= −−6

−8
= −3

4

∂v

∂x
= − 6

−8
=

3

4
(114)

alternate solution: Assuming the implicit functions exist differentiate the equations
F = 0, G = 0 with respect to x assuming u = f(x, y), v = g(x, y). This gives

2x+ 2v
∂u

∂x
+ 2u

∂v

∂x
=0

3 + 2y + 2u
∂u

∂x
− 2v

∂v

∂x
=0

(115)

Now put in the point (0, 0, 1, 1) and get

2
∂u

∂x
+ 2

∂v

∂x
=0

3 + 2
∂u

∂x
− 2

∂v

∂x
=0

(116)

This again has the solution ∂u/∂x = −3/4, ∂v/∂x = 3/4.

1.9 inverse functions

Suppose we have a function f from U ⊂ R2 to V ⊂ R2 which we write in the form

x =f1(u, v)

y =f2(u, v)
(117)

Suppose further for every (x, y) in V there is a unique (u, v) in U such that x =
f1(u, v), y = f2(u, v). (0ne says the function is one-to-one and onto.) Then there is a
an inverse function g from V to U defined by

u =g1(x, y)

v =g2(x.y)
(118)
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Figure 4: inverse function

So g sends every point back where it came from. See figure 4. We have

(g ◦ f)(u, v) =(u, v)

(f ◦ g)(x, y) =(x, y)
(119)

We write g = f−1.

example: Suppose the function is

x =au+ bv

y =cu+ dv
(120)

defined on all of R2. This can also be written in matrix form(
x
y

)
=

(
a b
c d

)(
u
v

)
(121)

This is invertible if we can solve the equation for (u, v) which is possible if and only if

det

(
a b
c d

)
= ad− bc 6= 0 (122)
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The inverse function is given by the inverse matrix(
u
v

)
=

(
a b
c d

)−1(
x
y

)
(123)

where (
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(124)

example: Consider the function

x =r cos θ

y =r sin θ
(125)

from
U = {(r, θ) : r > 0, 0 ≤ θ < 2π} (126)

to
V = {(x, y) : (x, y) 6= 0} (127)

This function sends (r, θ) to the point with polar coordinates (r, θ). See figure 5. The
function is invertible since every point (x, y) in V has unique polar coordinates (r, θ)
in U . (It would not be invertible if we took U = R2 since (r, θ) and (r, θ+ 2π) are sent
to the same point ). For (x, y) in the first quadrant the inverse is

r =
√
x2 + y2

θ = tan−1
(y
x

) (128)

1.10 inverse function theorem

Continuing the discussion of the previous section suppose that f has an inverse function
g and that both are differentiable. Then differentiating (f ◦ g)(x, y) = (x, y) we find by
the chain rule

(Df)(g(x, y)) (Dg)(x, y) = I I =

(
1 0
0 1

)
(129)

and so the derivative of the inverse function is the matrix inverse

(Dg)(x, y) = [(Df)(g(x, y))]−1 (130)

It is not always easy to tell whether an inverse function exists. The following
theorem can be helpful.
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Figure 5: inverse function for polar coordinates

Theorem 6 (inverse function theorem) Let x = f1(u, v), y = f2(u, v) have continuous
partial derivatives and suppose

x0 =f1(u0, v0)

y0 =f2(u0, v0)
(131)

and (
∂(x, y)

∂(u, v)

)
(u0, v0) 6= 0 (132)

Then there is an inverse function u = g1(x, y), v = g2(x, y) defined near (x0, y0) which
satisfies

u0 =g1(x0, y0)

v0 =g2(x0, y0)
(133)

and has a continuous derivative which satisfies (130). In particular Dg(x0, y0) =
[Df(u0, v0)]−1 or(

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
(x0,y0)

=

(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)−1

(u0,v0)

(134)
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Proof. The inverse exists if for each (x, y) near (x0, y0) there is a unique (u, v) near
(u0, v0) such that

F (x, y, u, v) ≡ f1(u, v)− x =0

G(x, y, u, v) ≡ f2(u, v)− y =0
(135)

This follows by the implicit functions theorem since (x0, y0, u0, v0) is one solution and
at this point

∂(F,G)

∂(u, v)
= det

(
Fu Fv
Gu Gv

)
= det

(
f1,u f1,v

f2,u f2,v

)
=
∂(x, y)

∂(u, v)
6= 0

The differentiability of the inverse also follows from the implicit function theorem.

problem: Consider the function

x =u+ v2

y =u2 + v
(137)

which sends (u, v) = (1, 2) to (x, y) = (5, 3). Show that the function is invertible near
(1, 2) and find the partial derivatives of the inverse function at (5, 3).

solution: We have(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)
=

(
1 2v

2u 1

)
=

(
1 4
2 1

)
at (1, 2) (138)

Therefore
∂(x, y)

∂(u, v)
= det

(
1 4
2 1

)
= −7 at (1, 2) (139)

This is not zero so the inverse exists by the theorem and sends (5, 3) to (1, 2). We have
for the derivatives(

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
(5,3)

=

(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)−1

(1,2)

=

(
1 4
2 1

)−1

=

(
−1/7 4/7
2/7 −1/7

) (140)

alternate solution: Differentiate x = u + v2, y = u2 + v assuming u, v are functions
of x, y, then put in the point.
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1.11 maxima and minima

Let f(x) = f(x1, . . . , xn) be a function from Rn to R and let x0 = (x0
1, . . . x

0
n) be a point

in Rn. We say that f has a local maximum at x0 if f(x) ≤ f(x0) for all x near x0. We
say that f has a local minimum at x0 if f(x) ≥ f(x0) for all x near x0.

Theorem 7 If f is differentiable at x0 and f has a local maximum or minimum at x0

then all partial derivatives vanish at the point, i.e.

fx1(x
0) = · · · = fxn(x0) = 0 (141)

Proof. For any h = (h1, . . . , hn) ∈ Rn consider the function F (t) = f(x0 + th) of
the single variable t. If f has a local maximum or minimum at x0 then F has a local
maximum or minimum at t = 0. By the chain rule F (t) is differentiable and and it is
a result of elementary calculus that F ′(0) = 0. But the chain rule says

F ′(t) =
n∑
i=1

fxi(x
0 + th)

d(x0
i + thi)

dt
=

n∑
i=1

fxi(x
0 + th)hi (142)

Thus

0 = F ′(0) =
n∑
i=1

fxi(x
0)hi (143)

Since this is true for any h it must be that fxi(x
0) = 0.

A point x0 with fxi(x
0) = 0 is called a critical point for f . We have seen that if f

is has a local maximum or minimum at x0 then it is a critical point. We are interested
whether the converse is true. If x0 is a critical point is it a local maximum or minimum
for f? Which is it?

To answer this question consider again F (t) = f(x0 + th) and suppose f is many
times differentiable. By Taylor’s theorem for one variable we have

F (1) = F (0) + F ′(0) +
1

2
F ′′(0) +

1

6
F ′′′(s) (144)

for some s between 0 and 1. But F ′(t) is computed above, and similarly we have

F ′′(t) =
n∑
i=1

n∑
j=1

fxixj(x
0 + th)hihj

F ′′′(t) =
n∑
i=1

n∑
j=1

n∑
k=1

fxixjxk(x
0 + th)hihjhk

(145)
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Then the Taylor’s expansion becomes

f(x0 + h) = f(x0) +
n∑
i=1

fxi(x
0)hi +

1

2

n∑
i=1

n∑
j=1

fxixj(x
0)hihj +R(h) (146)

This is an example of a multivariable Taylor’s theorem with remainder. The remainder
R(h) = F ′′′(s)/6 is small if h is small and one can show that there is a constant C such
that for h small |R(h)| ≤ C|h|3.

Now suppose x0 is a critical point so the first derivatives vanish. Also define a
matrix of second derivatives

A =

 fx1,x1(x
0) · · · fx1,xn(x0)

...
...

fxn,x1(x
0) · · · fxn,xn(x0)

 (147)

called the Hessian of f at x0. Then we can write our expansion as

f(x0 + h) = f(x0) +
1

2
h · Ah+R(h) (148)

We are interested in whether f(x0 + h) is greater than or less than f(x0) for |h| small.
Then idea is that since R(h) is much smaller than 1

2
h · Ah it is the latter term which

determines the answer.
A n×n matrix A is called positive definite if there is a constant M so h·Ah > M |h|2

for all h 6= 0. It is called negative definite if h · Ah < −M |h|2 for all h 6= 0.

Theorem 8 Let x0 be a critical point for f and suppose the Hessian A has detA 6= 0.

1. If A is positive definite then f has a local minimum at x0.

2. If A is negative definite then f has a local maximum at x0.

3. Otherwise f has a saddle point at x0, i.e f increases in some directions and
decreases in other directions as you move away from x0.

Proof. We prove the first statement. We have h · Ah > M |h|2. If also |h| ≤ M/4C.
then

|R(h)| ≤ C|h|3 ≤ 1

4
M |h|2 (149)

Therefore

f(x0 + h) ≥ f(x0) +
1

2
M |h|2 − 1

4
M |h|2 (150)

or

f(x0 + h) ≥ f(x0) +
1

4
M |h|2 (151)

27



Thus f(x0 + h) > f(x0) for 0 < |h| ≤ M/4C which means we have a strict local
maximum at x0.

Thus our problem is to decide whether or not A is positive or negative definite.
For any symmetric matrix A one can show that A is positive definite if and only if
all eigenvalues are postive and A is negative definite if and only if all eigenvalues are
negative. Recall that λ is an eigenvalue if there is a vector v 6= 0 such that Av = λv.
One can find the eigenvalues by solving the equation

det(A− λI) = 0 (152)

where I is the identity matrix.

example: Consider the function

f(x, y) = exp

(
−x

2

2
− y2

2
+ x+ y

)
(153)

The critical points are solutions of

fx =(−x+ 1) exp

(
−x

2

2
− y2

2
+ x+ y

)
= 0

fy =(−y + 1) exp

(
−x

2

2
− y2

2
+ x+ y

)
= 0

(154)

Thus the only critical point is (x, y) = (1, 1). The second derivatives at this point are

fxx =(x2 − 2x) exp

(
−x

2

2
− y2

2
+ x+ y

)
= −e

fxy =(−x+ 1)(−y + 1) exp

(
−x

2

2
− y2

2
+ x+ y

)
= 0

fyy =(y2 − 2y) exp

(
−x

2

2
− y2

2
+ x+ y

)
= −e

(155)

Thus the Hessian is

A =

(
fxx fxy
fyx fyy

)
=

(
−e 0
0 −e

)
(156)

It has eigenvalues −e,−e which are negative. Hence A is negative definite and the
function has a local maximum at (1, 1).

example: Consider the function

f(x, y) = x sin y (157)
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The critical points are solutions of

fx = sin y = 0

fy =x cos y = 0
(158)

These are points with x = 0 and y = 0,±π,±2π, · · · . The Hessian is

A =

(
fxx fxy
fyx fyy

)
=

(
0 cos y

cos y −x sin y

)
(159)

At points (0,±π), (0,±3π), . . . this is

A =

(
0 −1
−1 0

)
(160)

At points (0, 0), (0,±2π), . . . this is

A =

(
0 1
1 0

)
(161)

In either case the eigenvalues are solutions of

det(A− λI) = det

(
−λ ±1
±1 −λ

)
= λ2 − 1 = 0 (162)

Thus the eigenvalues are λ = ±1. Since they have both signs every critical point is a
saddle point.

1.12 differentiation under the integral sign

Theorem 9 If f(t, x), (∂f/∂t)(t, x) exist and are continuous

d

dt

[∫ b

a

f(t, x)dx

]
=

∫ b

a

∂f

∂t
(t, x) dx (163)

Proof. Form the difference quotient∫ b
a
f(t, x+ h)−

∫ b
a
f(t, x)

h
=

∫ b

a

f(t, x+ h)− f(t, x)

h
(164)

and take the limit h → 0. The only issue is whether we can take the limit under the
integral sign on the right. This can be justified under the hypotheses of the theorem.
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example:

d

dt

[∫ 1

0

log(x2 + t2)dx

]
=

∫ 1

0

2t

x2 + t2
dx

=
[
2 tan−1

(x
t

)]x=1

x=0

=2 tan−1

(
1

t

) (165)

problem: Find ∫ 1

0

√
x− 1

log x
dx (166)

solution: We solve a more general problem which is to evaluate

φ(t) =

∫ 1

0

xt − 1

log x
dx (167)

Then φ(1/2) is the answer to the original problem. Differentiating under the integral
sign and taking account that d(xt)/dt = xt log x we have

φ′(t) =

∫ 1

0

xt dx =

[
xt+1

t+ 1

]x=1

x=0

=
1

t+ 1
(168)

Hence
φ(t) = log(t+ 1) + C (169)

for some constant C. But we know φ(0) = 0 so we must have C = 0. Thus φ(t) =
log(t+ 1) and the answer is φ(1/2) = log(3/2).

1.13 Leibniz’ rule

The following is a generalization of the previous result where we allow the endpoints
to be functions of t.

Theorem 10

d

dt

[∫ b(t)

a(t)

f(t, x)dx

]
= f

(
t, b(t)

)
b′(t)− f

(
t, a(t)

)
a′(t) +

∫ b(t)

a(t)

∂f

∂t
(t, x) dx (170)
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Proof. Let

F (b, a, t) =

∫ b

a

f(t, x) dx (171)

What we want is the derivative of F (b(t), a(t), t) and by the chain rule this is

d

dt
[F (b(t), a(t), t)]

= Fb(b(t), a(t), t)b′(t) + Fa(b(t), a(t), t)a′(t) + Ft(b(t), a(t), t)
(172)

But

Fb(b, a, t) = f(t, b) Fa(b, a, t) = −f(t, a) Ft(b, a, t) =

∫ b

a

∂f

∂t
(t, x) dx (173)

which gives the result.

example:

d

dt

[∫ t2

t

sin(t2 + x2)dx

]

= sin(t2 + x2)|x=t2
d(t2)

dt
− sin(t2 + x2)|x=t

d(t)

dt
+

∫ t2

t

∂

∂t
sin(t2 + x2)dx

= sin(t2 + t4)2t− sin(2t2) + 2t

∫ t2

t

cos(t2 + x2)dx

(174)

example: (forced harmonic oscillator). Suppose we want to find a function x(t) whose
derivatives x′(t), x′′(t) solve the ordinary differential equation

mx′′ + kx = f(t) (175)

with the inital conditions
x(0) = 0 x′(0) = 0 (176)

Here k,m are positive constants and f(t) is an arbitrary function.
We claim that a solution is

x(t) =
1

mω

∫ t

0

sin(ω(t− τ))f(τ)dτ ω =

√
k

m
(177)

To check this note first that x(0) = 0. Then take the first derivative using the
Leibniz rule and find

x′(t) =
1

mω
[sin(ω(t− τ))f(τ)]τ=t +

1

mω

∫ t

0

ω cos(ω(t− τ))f(τ)dτ (178)
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The first term is zero and we also note that x′(0) = 0. Taking one more derivative
yields

x′′(t) =
1

m
[cos(ω(t− τ))f(τ)]τ=t +

1

mω

∫ t

0

(−ω2) sin(ω(t− τ))f(τ)dτ (179)

which is the same as

x′′(t) =
1

m
f(t)− ω2x(t) (180)

Now multiply by m, use mω2 = k and we recover the differential equation.

1.14 calculus of variations

We consider the problem of finding maximima and minima for a functional - i.e. for a
function of functions.

As an example consider the problem of finding the curve between two points (x0, y0)
and (x1, y1) which has the shortest length. We assume that there is such a curve and
that it it is the graph of a function y = y(x) with y(x0) = y0 and y(x1) = y1. The
length of such a curve is

I(y) =

∫ x1

x0

√
1 + y′(x)2dx (181)

and we seek to find the function y = y(x) which gives the minimum value.
More generally suppose we have a function F (x, y, y′) of three real variables (x, y, y′).

For any differentiable function y = y(x) satisfying y(x0) = y0 and y(x1) = y1 form the
integral

I(y) =

∫ x1

x0

F (x, y(x), y′(x))dx (182)

The question is which function y = y(x) minimizes (or maximizes) the functional I(y).
We are looking for a local minimum (or maximum), that is we want to find a function
y such that I(ỹ) ≥ I(y) for all functions ỹ near to y in the sense that ỹ(x) is close to
y(x) for all x0 ≤ x ≤ x1.

Theorem 11 If y = y(x) is a local maximum or minimum for I(y) with fixed endpoints
then it satisfies

Fy(x, y(x), y′(x))− d

dx
(Fy′(x, y(x), y′(x)) = 0 (183)

Remarks.

1. The equation is called Euler’s equation and is abreviated as

Fy −
d

dx
Fy′ = 0 (184)
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2. Note that y, y′ mean two different things in Euler’s equation. First one evaluates
the partial derivatives Fy, Fy′ treating y, y′ as independent variables. Then in
computing d/dx one treats y, y′ as a function and its derivative.

3. The converse may not be true, i.e solutions of Euler’s equation are not necessarily
maxima or minima. They are just candidates and one should decide by other
criteria.

proof: Suppose y = y(x) is a local minimum. Pick any differentiable function η(x)
defined for x0 ≤ x ≤ x1 and satisfying η(x0) = η(x1) = 0. Then for any real number t
the function

yt(x) = y(x) + tη(x) (185)

is differentiable with respect to x and satisfies yt(x0) = yt(x1) = 0. Consider the
function

J(t) = I(yt) =

∫ x1

x0

F (x, yt(x), y′t(x))dx (186)

Since yt is near y0 = y for t small, and since y0 is a local minimum for I, we have

J(t) = I(yt) ≥ I(y0) = J(0) (187)

Thus t = 0 is a local minimum for J(t) and it follows that J ′(0) = 0.
To see what this says we differentiate under the integral sign and compute

J ′(t) =

∫ x1

x0

∂

∂t
F (x, yt(x), y′t(x))dx

=

∫ x1

x0

(
Fy(x, yt(x), y′t(x))

∂

∂t
(yt(x)) + Fy′(x, yt(x), y′t(x))

∂

∂t
(y′t(x))

)
dx

=

∫ x1

x0

(Fy(x, yt(x), y′t(x))η(x) + Fy′(x, yt(x), y′t(x))η′(x)) dx

(188)

Here in the second step we have used the chain rule. Now in the second term integrate
by parts taking the derivative off η′(x) = (d/dx)η and putting it on Fy′(x, yt(x), y′t(x))
The term involving the endpoints vanishes because η(x0) = η(x1) = 0. Then we have

J ′(t) =

∫ x1

x0

(
Fy(x, yt(x), y′t(x))− d

dx
Fy′(x, yt(x), y′t(x))

)
η(x)dx (189)

Now put t = 0 and get

0 = J ′(0) =

∫ x1

x0

(
Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x))

)
η(x)dx (190)
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Since this is true for an arbitrary function η it follows that the expression in parentheses
must be zero which is our result. 1

example: We return to the problem of finding the curve between two points with the
shortest length. That is we seek to minimize

I(y) =

∫ x1

x0

√
1 + y′(x)2dx (191)

This has the form (182) with

F (x, y, y′) =
√

1 + (y′)2 (192)

The minimizer must satisfy Euler’s equation. Since Fy = 0 and Fy′ = y′/
√

1 + (y′)2

this says

Fy −
d

dx
Fy′ =

d

dx

[
y′√

1 + (y′)2

]
= 0 (193)

Evaluating the derivatives yields√
1 + (y′)2y′′ − (y′)2y′′/

√
1 + (y′)2

1 + (y′)2
= 0 (194)

Now multiple by (1 + (y′)2)3/2 and get

(1 + (y′)2)y′′ − (y′)2y′′ = 0 (195)

which is the same as y′′ = 0. Thus the minimizer must have the form y = ax + b for
some constants a, b. So the shortest distance between two points is along a straight line
as expected.

example: The problem is to find the function y = y(x) with y(0) = 0 and y(1) = 1
which minimizes the integral

I(y) =
1

2

∫ 1

0

(y(x)2 + (y′(x))2)dx (196)

and again we assume there is such a minimizer. The integral has the form (182) with

F (x, y, y′) =
1

2
(y2 + (y′)2) (197)

1In general if f is a continuous function
∫ b

a
f(x)dx = 0 does not imply that f ≡ 0. However it is

true if f(x) ≥ 0. If
∫ b

a
f(x)η(x)dx = 0 for any continuous function η then we can take η(x) = f(x)

and get
∫ b

a
f(x)2dx = 0, hence f(x)2 = 0, hence f(x) = 0. This is not quite the situation above since

we also restriced η to vanish at the endpoints. But the conclusion is stil valid.
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Then Euler’s equation says

Fy −
d

dx
(Fy′) = y − d

dx
y′ = y − y′′ = 0 (198)

Thus we must solve the second order equation y − y′′ = 0. Since the equation has
constant coefficients one can find solutions by trying y = erx. One finds that r2 = 1
and so y = e±x are solutions The general solution is

y(x) = c1e
x + c2e

−x (199)

The constants c1, c2 are fixed by the condition y(0) = 0 and y(1) = 1 and one finds

y(x) =
e

e2 − 1
(ex − e−x) =

2e

e2 − 1
sinhx (200)

example : Suppose that an object moves on a line and its position at time t is given
by a function x(t). Suppose also we know that x(t0) = x0 and x(t1) = x1 and that it is
moving in a force field F (x) = −dV/dx determined by some potential function V (x).
What is the trajectory x(t)?

One way to proceed is to form a function called the Lagrangian by taking the
difference of the kinetic and potential energy:

L(x, x′) =
1

2
m(x′)2 − V (x) (201)

For any trajectory x = x(t) one forms the action

A(x) =

∫ t1

t0

L(x(t), x′(t))dt (202)

According to D’Alembert’s principle the actual trajectory is the one that minimizes the
action. This is also called the principle of least action.

To see what it says we observe that this problem has the form (182) with new names
for the variables. Euler’s equation says

Lx −
d

dt
Lx′ = 0 (203)

But Lx = −dV/dx = F and Lx′ = mx′ so this is

F −mx′′ = 0 (204)

which is Newton’s second law. Thus the principle of least action is an alternative to
Newton’s second law. This turns out to be true for many dynamical problems.
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2 vector calculus

2.1 vectors

We continue our survey of multivariable caculus but now put special emphasis on R3

which is a model for physical space.
Vectors in R3 will now be indicated by arrows or bold face type as in u = (u1, u2, u3).

Any such vector can be written

u =(u1, u2, u3)

=u1(1, 0, 0) + u2(0, 1, 0) + u3(0, 0, 1)

=u1i + u2j + u3k

(205)

where we have defined

i = (1, 0, 0) j = (0, 1, 0) k = (0, 0, 1) (206)

Any vector can be written as a linear combination of the independent vectors i, j,k so
these form a basis for R3 called the standard basis.

We consider several products of vectors:

dot product: The dot product is defined either by

u · v = u1v1 + u2v2 + u3v3 (207)

or by
u · v = |u||v| cos θ (208)

where θ is the angle between u and v. Note that u · u = |u|2. Also note that u is
orthogonal (perpendicular) to v if and only if u · v = 0.

The dot product has the properties

u · v =v · u
(αu) · v =α(u · v) = u · (αv)

(u1 + u2) · v =u1 · v + u2 · v
(209)

Examples are

i · i = 1 j · j = 1 j · j = 1

i · j = 0 j · k = 0 k · i = 0
(210)

This says that i, j,k are orthogonal unit vectors. They are an example of an orthonormal
basis for R3.
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Figure 6: cross product

cross product: (only in R3) The cross product of u and v is a vector u×v which has
length

|u× v| = |u||v| sin θ (211)

Here θ is the positive angle between the vectors. The direction of u× v is specified by
requiring that it be perpendicular to u and v in such a way that u,v,u × v form a
right-handed system. (See figure 6)

The length |u× v| is interpreted as the area of the parallelogram spanned by u,v.
This follows since the parallelogram has base |u| and height |v| sin θ (See figure 6) and
so

area = base × height

=|u| |v| sin θ
=|u× v|

(212)

An alternate definition of the cross-product uses determinants. Recall that

det

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 =a1 det

(
b2 b3

c2 c3

)
− a2 det

(
b1 b3

c1 c3

)
+ a3 det

(
b1 b2

c1 c2

)
=a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)

(213)
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The other definition is

u×v = det

 i j k
u1 u2 u3

v1 v2 v3

 = i(u2v3− u3v2) + j(u3v1− u1v3) + k(u1v2− u2v1) (214)

The cross product has the following properties

u× u =0

u× v =− v × u

(αu)× v =α(u× v) = u× (αv)

(u1 + u2)× v =u1 × v + u2 × v

(215)

Examples are
i× j = k j× k = i k× i = j (216)

triple product: The triple product of vectors w,u,v is defined by

w · (u× v) =w1(u2v3 − u3v2) + w2(u3v1 − u1v3) + w3(u1v2 − u2v1)

= det

 w1 w2 w3

u1 u2 u3

v1 v2 v3

 (217)

The absolute value |w · (u × v)| is the volume of the parallelopiped spanned by
u,v,w (see figure 16). This is so because if φ is the angle between w and u× v then

volume = (area of base) × height

=
(
|u× v|

)(
|w| cosφ

)
=|w · (u× v)|

(218)

problem: Find the volume of the parallelopiped spanned by i + j, j, i + j + k.

solution:

det

 1 1 0
0 1 0
1 1 1

 = 1 (219)
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Figure 7: triple product

Planes: A plane is determined by a particular point R0 = x0i + y0j + z0k in the plane
and a vector N = N1i +N2j +N3k perpendicular to the plane, called a normal vector.
If R = xi+yj+ zk is any other point in the plane, then R−R0 lies in the plane, hence
it is orthogonal to N and hence (see figure 8)

N · (R−R0) = 0 (220)

In fact this is the equation of the plane. That is a point R lies on the plane if and only
if it satisfies the equation. Written out it says

N1(x− x0) +N2(y − y0) +N3(zz0) = 0 (221)

problem: Find the plane determined by the three points a = i,b = 2j, c = 3k.

solution: b− a = −i + 2j and c− a = −i + 3k both lie in the the plane. Their cross
product is orthogonal to both, hence to the plane, and can be take as a normal vector:

N = (b− a)× (c− a) = det

 i j k
−1 2 0
−1 0 3

 = 6i + 3j + 2k (222)

For the particular point take R0 = a = i. Then the equation of the plane is

N · (R−R0) = 6(x− 1) + 3y + 2z = 0 (223)
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Figure 8:

2.2 vector-valued functions

A vector-valued function is a function from R to R3 (or more generally Rn). It is written

R(t) = (x(t), y(t), z(t)) = x(t)i + y(t)j + z(t)k (224)

To say R(t) has limit
lim
t→t0

R(t) = R0 (225)

means that
lim
t→t0
|R(t)−R0| = 0 (226)

If R0 = x0i + y0j + z0j then

|R(t)−R0| =
√

(x(t)− x0)2 + (y(t)− y0)2 + (z(t)− z0)2 (227)

Hence limt→t0 R(t) = R0 is the same as the three limits

lim
t→t0

x(t) = x0 lim
t→t0

y(t) = y0 lim
t→t0

z(t) = z0 (228)

The function R(t) is continuous if

lim
t→t0

R(t) = R0 (229)
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Figure 9: tangent vector to a curve

This is the same as saying that the components x(t), y(t), z(t) are all continuous.
The function R(t) is differentiable if

R′(t) =
dR

dt
= lim

h→0

R(t+ h)−R(t)

h
(230)

exists. Since

R(t+ h)−R(t)

h
=
x(t+ h)− x(t)

h
i +

y(t+ h)− y(t)

h
j +

z(t+ h)− z(t)

h
k (231)

this is the same as saying that the components x(t), y(t), z(t) are all differentiable, in
which case the derivative is

R′(t) = x′(t)i + y′(t)j + z′(t)k (232)
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Figure 10: some examples

In other words you find the derivative by differentiating the components

The range of a continuous function R(t) is a curve. The derivative R′(t) has the
interpretation of being a tangent to the curve as figure 9 shows.

A common application is that R(t) is the location of some object at time t. Then
R′(t) is the velocity and the magnitude of the velocity |R′(t)| is the speed. The second
derivative R′′(t) is the acceleration.

Here are some examples illustrated in figure 10

example: straight line. Consider

R(t) = at+ b (233)
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Then R(0) = b and R′(t) = a so it is a straight line through b in the direction a.

example: circle. Let R(t) be the point on a circle of radius a with polar angle t.
As t increases it travels around the circle at uniform speed. The point has Cartesian
coordinates x = a cos t, y = a sin t so

R(t) = a cos t i + a sin t j (234)

The velocity is
R′(t) = −a sin t i + a cos t j (235)

and the speed is |R′| = a.

example: helix. To the previous example we add a constant velocity in the z-direction

R(t) = a cos t i + a sin t j + btk (236)

This describes a helix and we have

R′(t) = −a sin t i + a cos t j + bk (237)

2.3 other coordinate systems

We next describe vector valued functions using other coordinate systems.

A. Polar: First some general remarks about vectors and polar coordinates in R2.
Let R(r, θ) be the point with polar coordinates r, θ. This has Cartesian coordinates
x = r cos θ, y = r sin θ so

R(r, θ) = r cos θi + r sin θj (238)

If we vary r with θ fixed we get an ”r-line”. The tangent vector to this line is

∂R

∂r
(r, θ) = cos θi + sin θj (239)

If we vary θ with r fixed we get an ”θ-line”. The tangent vector to this line is

∂R

∂θ
(r, θ) = −r sin θi + r cos θj (240)

We also consider unit tangent vectors to these coordinate lines:

er(θ) =
∂R/∂r

|∂R/∂r|
= cos θi + sin θj

eθ(θ) =
∂R/∂θ

|∂R/∂θ|
= − sin θi + cos θj

(241)

See figure 11.
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Figure 11: polar and cylindrical basis vectors

Note that
er(θ) · eθ(θ) = cos θ(− sin θ) + sin θ cos θ = 0 (242)

Thus for any θ the vectors er(θ), eθ(θ) form an orthonormal set of vectors in R2 and
hence an orthonormal basis. Also note for future reference that

der
dθ

=eθ

deθ
dθ

=− er

(243)

Now a curve is specified in polar coordinates by a pair of functions r(t), θ(t). The
Cartesian coordinates are x(t) = r(t) cos θ(t) and y(t) = r(t) sin θ(t). So the curve is
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described in polar coordinates with polar basis vectors by

R(t) =x(t)i + y(t)j

=r(t)(cos θ(t)i + sin θ(t)j)

=r(t)er(θ(t))

(244)

The velocity is

R′(t) = r′(t)er(θ(t)) + r(t)
d

dt
er(θ(t)) (245)

But
d

dt
er(θ(t)) =

der
dθ

(θ(t))
dθ

dt
= θ′(t)eθ(θ(t)) (246)

and so
R′(t) = r′(t)er(θ(t)) + r(t)θ′(t)eθ(θ(t)) (247)

By differentiating this we get a formula for the acceleration R′′(t):

R′′(t) =
(
r′′(t)− r′(t)(θ′(t))2

)
er(θ(t)) +

(
r(t)θ′′(t) + 2r′(t)θ′(t)

)
eθ(θ(t)) (248)

We summarize in an abbreviated notation

R =rer

R′ =r′er + rθ′eθ

R′′ =(r′′ − r(θ′)2)er + (rθ′′ + 2r′θ′)eθ

(249)

example: Consider the spiral described in polar coordinates by r = at and θ = bt.
Then r′ = a, θ′ = b and r′′ = 0, θ′′ = 0 and so

R =at er

R′ =a er + abt eθ

R′′ =− ab2t er + 2ab eθ

(250)

In these formulas er = er(bt) = cos(bt)i+sin(bt)j and eθ = eθ(bt) = − sin(bt)i+cos(bt)j.

B. cylindrical: Cylindrical coordinates in R3 replace x, y by polar coordinates r, θ and
leave z alone. Thus

x =r cos θ

y =r sin θ

z =z

(251)

A point with cylindrical coordinates r, θ, z is

R(r, θ, z) = r cos θ i + r sin θ j + z k (252)
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Unit tangent vectors to the coordinate lines are er, eθ as before and ez = k. See figure
11.

A curve in cylindrical coordinate is given by r(t), θ(t), z(t) and we have

R(t) = r(t)er(θ(t)) + z(t)ez (253)

As before:

R =rer + zez

R′ =r′er + rθ′eθ + z′ez

R′′ =(r′′ − r(θ′)2)er + (rθ′′ + 2r′θ′)eθ + z′′ez

(254)

C. spherical: Spherical coordinates ρ, φ, θ label a point by its distance to the origin,
the angle with the z-axis, and the polar angle when projected into the x, y plane. The
corresponding Cartesian coordinates are

x =ρ sinφ cos θ

y =ρ sinφ sin θ

z =ρ cosφ

(255)

The point with spherical coordinates ρ, φ, θ is

R(ρ, φ, θ) = ρ sinφ cos θ i + ρ sinφ sin θ j + ρ cosφ k (256)

Tangent vectors to the coordinate lines are

∂R

∂ρ
= sinφ cos θ i + sinφ sin θ j + cosφ k

∂R

∂φ
=ρ cosφ cos θ i + ρ cosφ sin θ j− ρ sinφ k

∂R

∂θ
=− ρ sinφ sin θ i + ρ sinφ cos θ j

(257)

Divide by the length and get unit tangent vectors to the coordinate lines: (see figure
12)

eρ(φ, θ) = sinφ cos θ i + sinφ sin θ j + cosφ k

eφ(φ, θ) = cosφ cos θ i + cosφ sin θ j− sinφ k

eθ(φ, θ) =− sin θ i + cos θ j

(258)

A curve is spherical coordinates is specified by three functions r(t), φ(t), θ(t). The
corresponding vector-valued function is

R(t) =x(t)i + y(t)j + z(t)k

=ρ(t)
(

sinφ(t) cos θ(t)i + sinφ(t) sin θ(t)j + cosφ(t)k
)

=ρ(t)eρ(φ(t), θ(t))

(259)
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Figure 12: spherical basis vectors

Now we can take derivatives and we find

R =ρeρ

R′ =ρ′eρ + ρφ′ eφ + ρθ′ sinφ eθ

R′′ =
(
ρ′′ − ρ(φ′)2 − ρ(θ′)2 sin2 φ

)
eρ

+
(
ρφ′′ + 2ρ′φ′ − ρ(θ′)2 sinφ cosφ

)
eφ

+
(
ρθ′′ sinφ+ 2ρ′φ′ sinφ+ 2ρθ′φ′ cosφ

)
eθ

(260)

example: Suppose that ρ = 1, φ = at, θ = bt with b much greater than a. This
represents a point on a sphere sprialing down from the north pole. Then ρ′ = 0, φ′ =
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a, θ′ = b and ρ′′ = 0, φ′′ = 0, θ′′ = 0 and we have with eρ = eρ(at, bt), etc

R =eρ

R′ =a eφ + b sin at eθ

R′′ =
(
− a2 − b2 sin2 at

)
eρ +

(
− b2 sin at cos at

)
eφ +

(
2ab cos at

)
eθ

(261)

2.4 line integrals

We want to define the length of a curve C in R3. Suppose the curve is the range of a
vector valued function R(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b. We say that R(t) is
a parametrization of C. There will be many parametrizations, but we pick one. We
divide up the interval [a, b] by picking points

a = t0 < t1 < t2 < · · · < tn = b (262)

This gives a sequence of points on the curve R(t0),R(t1), . . .R(tn). (see figure 13). If
∆ti = ti+1 − ti is small then for any t∗i in the interval [ti, ti+1]

R(ti+1)−R(ti) = (x(ti+1)− x(ti))i + (y(ti+1)− y(ti))j + (z(ti+1)− z(ti))k

≈ x′(t∗i )∆tii + y′(t∗i )∆tij + z′(t∗i )∆tik

= R′(t∗i )∆ti

(263)

(The mean value theorem says there is a point t∗i so that (x(ti+1)− x(ti)) = x′(t∗i )∆ti.
Changing to an arbitrary point in the interval is second order small and negligible).
Let ∆si be the length of the straight line from R(ti) to R(ti+1). Then

∆si = |R(ti+1)−R(ti)| ≈ |R′(t∗i )|∆ti (264)

Then we have

length of C ≈
n−1∑
i=0

∆si ≈
n−1∑
i=0

|R′(t∗i )|∆ti (265)

This is a Riemann sum and as the division becomes increasingly fine, i.e as maxi ∆ti
tends to 0, this converges a Riemann integral which we take as the definition

length of C =

∫ b

a

|R′(t)|dt (266)

One can show that this depends only on C and not on the particular parametrization.
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Figure 13: line integral

More generally we want to define the integral of a function f(R) = f(x, y, z) over
the curve C. An approximation to what we want is

n−1∑
i=0

f(R(t∗i ))∆si ≈
n−1∑
i=0

f(R(t∗i ))|R′(t∗i )|∆ti (267)

As the division becomes fine this converges to a Riemann integral which we take as the
definition of the integral of f over C. It is denoted

∫
C f(R)ds and is given by∫

C
f(R)ds =

∫ b

a

f(R(t))|R′(t)|dt (268)

This is also independent of parametrization. A short way to remember it is to replace
R by its parametrization R(t), replace C by the interval [a, b] and replace the formal
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symbol ds by

ds =

∣∣∣∣dRdt
∣∣∣∣ dt (269)

Note also that if f(R) = 1 we have∫
C
ds = length of C (270)

The same formulas hold in R2 but now R(t) = x(t)i + y(t)j.

example: Consider the helix parametrized by

R(t) = a cos t i + a sin t j + bt k (271)

with 0 ≤ t ≤ 2π. Then

dR

dt
= −a sin t i + a cos t j + b k (272)

and

ds =

∣∣∣∣dRdt
∣∣∣∣ dt =

√
a2 + b2 dt (273)

The length is then ∫
C
ds =

∫ 2π

0

√
a2 + b2 dt = 2π

√
a2 + b2 (274)

example: Suppose we have a thin semi-circular wire of radius a with uniform linear
density ρ (mass per unit of length). We want to find the y-component of the center of
mass. This is defined by dividing the wire up into segments of length ∆si and mass
∆mi = ρ∆si and computing

ȳ =

∑
i yi∆mi∑
i ∆mi

=

∑
i yi∆si∑
i ∆si

(275)

where yi is the y-coordinate of the ith segment. As the division becomes fine this is
expressed as a ratio of line integrals over the semi-circle C

ȳ =

∫
C yds∫
C ds

(276)

To compute it parametrize the semi-circle by

R(θ) = a cos θi + a sin θj (277)
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with 0 ≤ θ ≤ π. Then
dR

dθ
= −a sin θ i + a cos θ j (278)

and

ds =

∣∣∣∣dRdθ
∣∣∣∣ dθ = adθ (279)

Then since y = a sin θ ∫
C
y ds =

∫ π

0

a sin θ adθ = 2a2 (280)

and ∫
C
ds =

∫ π

0

adθ = aπ (281)

Thus

ȳ =
2a2

aπ
=

2a

π
(282)

2.5 double integrals

Let R be a region in R2 and let f(x, y) be a function defined on R. We want to define
the integral of f over R denoted by∫

R
f(x, y)dA or

∫
R
f(x, y)dxdy or

∫ ∫
R
f(x, y)dxdy (283)

It is supposed to be the sum of the values of the function weighted by area.
To define it put a rectangular grid over the region (see figure 14) and suppose the

rectangles are enumerated by some index i. The ith rectangle will have some dimensions
∆xi,∆yi. Let ∆Ai = ∆xi∆yi be the area of the ith rectangle. Also let (x∗i , y

∗
i ) be any

point in the ith rectangle. An approximation to what we want is the Riemann sum∑
i

f(x∗i , y
∗
i )∆Ai (284)

If these expressions approach a definite number as the grid becomes fine then this is
the integral we want. The fineness of the grid can be measured by

h = max
i
{∆xi,∆yi} (285)

Here is an exact definition of the integral.

definition: If there is a number I so that for any ε > 0 there is a δ > 0 such that for
any grid over R with h < δ and any choice of points (x∗i , y

∗
i ) in the grid we have

|
∑
i

f(x∗i , y
∗
i )∆Ai − I| < ε (286)
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Figure 14: double integral

then f is integrable over R and we define∫
R
f(x, y)dA = I (287)

For short one can write this as∫
R
f(x, y)dA = lim

h→0

∑
i

f(x∗i , y
∗
i )∆Ai (288)

although it is not an ordinary limit since the right side is not a function of h.

One can show:

Theorem 12 Continuous functions are integrable.

Here are some applications of double integrals:

1. With f = 1 ∫
R
dA = area of R (289)
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2. If R represents a thin plate and f(x, y) is the density of the plate (mass per unit
area) then f(x∗i , y

∗
i )∆Ai is the approximate mass of the ith rectangle and so∫

R
f(x, y)dA = total mass of plate (290)

3. If f(x, y) ≥ 0 then f(x∗i , y
∗
i )∆Ai is the approximate volume of the column above

the ith rectangle and under the graph and so∫
R
f(x, y)dA = volume under the graph of z = f(x, y) above R (291)

Here are some properties of double integrals:

1. For any two functions f1, f2 on R∫
R

(f1 + f2)dA =

∫
R
f1dA+

∫
R
f2dA

2. If α is a constant ∫
R
αfdA = α

∫
R
fdA

3. If R can be written as a disjoint union R = R1 ∪R2 then∫
R
fdA =

∫
R1

fdA+

∫
R2

fdA

To compute double integrals one writes them as iterated integrals in one variable
and then uses the fundamental theorem of calculus.

Theorem 13 Suppose the region R has the form

R = {(x, y) : a ≤ x ≤ b, p(x) ≤ y ≤ q(x)} (292)

for some functions p, q. (See figure 15). Then∫
R
f(x, y)dA =

∫ b

a

(∫ q(x)

p(x)

f(x, y)dy
)
dx (293)

This says fix x and integrate over the y values in the region for this value of x. This
gives you a function of x which you integrate over the x values for the region.
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Figure 15: iterated integral

example: Suppose the region R below the graph of y = −x2 + 1 in the first quadrant.
Thus R is defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ −x2 + 1. We compute∫

R
xdA =

∫ 1

0

(∫ −x2+1

0

xdy

)
dx =

∫ 1

0

[xy]y=−x2+1
y=0 dx

=

∫ 1

0

(−x3 + x)dx = −1

4
+

1

2
=

1

4

(294)

Alternatively R can be regarded as the region 0 ≤ y ≤ 1 and 0 ≤ x ≤
√

1− y (draw a
picture). Then we can do the x integral first:∫

R
xdA =

∫ 1

0

(∫ √1−y

0

xdx

)
dy =

∫ 1

0

[
x2

2

]x=
√

1−y

x=0

dy

=

∫ 1

0

1− y
2

dy =
1

2
− 1

4
=

1

4

(295)
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2.6 triple integrals

Now R be a region in R3 and let f be a function defined on R. We want to define the
integral of f over R which will be denoted∫

R
f(x, y, z)dV or

∫
R
f(x, y, z)dxdydz (296)

To defined it divide the region R up into many small rectangular boxes. Suppose the
ith box has dimensions ∆xi,∆yi,∆zi and volume ∆Vi = ∆xi∆yi∆zi and let (x∗i , y

∗
i , z
∗
i )

be an arbitrary point in the ith box. Also let

h = max
i

(∆xi,∆yi,∆zi) (297)

be the large dimension in the grid. Then we define∫
R
f(x, y, z)dV = lim

h→0

∑
i

f(x∗i , y
∗
i , z
∗
i )∆Vi (298)

If f = 1 then
∫
R dV is interpreted as the volume of R. Another application is that

R could represent a solid object. If f(x, y, z) is the density at the point (x, y, z) (mass
per unit volume) then

∫
R f(x, y, z)dV is the total mass of the object.

Suppose the regionR is the region between the graphs of z = φ(x, y) and z = ψ(x, y)
with (x, y) restricted to some plane region E (see figure 16). Then we can write the
triple integral as a single integral followed by a double integral:∫

R
f(x, y, z)dV =

∫
E

(∫ ψ(x,y)

φ(x,y)

f(x, y, z)dz

)
dA (299)

If in addition the plane region E is the region between two curves y = p(x) and y = q(x)
with a ≤ x ≤ b then the double integral can be written as an iterated in integral and
we have ∫

R
f(x, y, z)dV =

∫ b

a

(∫ q(x)

p(x)

(∫ ψ(x,y)

φ(x,y)

f(x, y, z)dz

)
dy

)
dx (300)

example: Suppose we are given the problem of finding the volume between the
paraboloid z = 2− x2 − y2 and the plane z = 1.

These surfaces intersect when x2 + y2 = 1. The problem must be refering to the
region with x2 + y2 ≤ 1 since the region with x2 + y2 ≥ 1 is infinite. Thus we want to
find the volume of the region R below z = 2−x2−y2 and above z = 1 with x2 +y2 ≤ 1.
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Figure 16:

It is ∫
R
dV =

∫
x2+y2≤1

(∫ 2−x2−y2

1

dz

)
dA

=

∫
x2+y2≤1

(1− x2 − y2)dA

=

∫ 1

−1

(∫ √1−x2

−
√

1−x2
(1− x2 − y2)dy

)
dx

=

∫ 1

−1

4

3
(1− x2)3/2dx

=
π

2

(301)

The last integral is left as an exercise. (An alternative is to evaluate the integral∫
x2+y2≤1

(1− x2 − y2)dA in polar coordinates, a topic we take up later.)

example: Let R be the region bounded by the planes x = 0, y = 0, z = 0 and
x+ y + z = 1 and suppose we want to write

∫
R x dV as an interated integral.

The intersection of R with the plane z = 0 is the region E bounded by the lines
x = 0, y = 0, x+ y = 1. In fact the region R lies between z = 1− x− y and z = 0 and
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above E. (draw a picture). Thus we have∫
R
x dV =

∫
E

(∫ 1−x−y

0

xdz

)
(302)

But since E lies between y = 0 and y = 1− x with 0 ≤ x ≤ 1 this can be expressed as∫
R
x dV =

∫ 1

0

(∫ 1−x

0

(∫ 1−x−y

0

xdz

)
dy

)
dx (303)

The evaluation is left as an exercise.

2.7 parametrized surfaces

Consider a function from R ⊂ R2 to R3 which we write as

x = x(u, v) y = y(u, v) z = z(u, v) (304)

The range of this function is a surface S and the function is called a parametrization
of the surface. (A surface has many possible parametrizations, but we pick one). The
function can also be written

R(u, v) = x(u, v)i + y(u, v)j + z(u, v)k (305)

example: Consider the function

x =a sinφ cos θ

y =a sinφ sin θ

z =a cosφ

(306)

with 0 < φ < π and 0 < θ < 2π. Then S is the surface of a sphere of radius a, and it
is parametrized by spherical coordinates.

example: Suppose S is the graph of a function z = φ(x, y) with (x, y) ∈ R. Then S
can be parametrized by

x = u y = v z = φ(u, v) (307)

with (u, v) ∈ R. This can also be written

x = x y = y z = φ(x, y) (308)

with (x, y) ∈ R.
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Figure 17:

Now suppose S is a surface parametrized by R(u, v). At (u0, v0) we fix v and vary
u we get a u-line in S. Then

∂R

∂u
(u0, v0) = tangent vector to u-line through R(u0, v0)

∂R

∂v
(u0, v0) = tangent vector to v-line through R(u0, v0)

Together these two tangent vectors determine the tangent plane to the surface at
R(u0, v0). A normal to this tangent plane is (see figure 17)

N =
∂R

∂u
(u0, v0)× ∂R

∂v
(u0, v0) (309)

With this N the equation of the tangent plane to the surface S at R0 = R(u0, v0) is

N · (R−R0) = 0 (310)

example: Suppose we want to find the tangent plane to the surface

x = u+ v y = u− v z = 2uv (311)
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at the point u = 1, v = 1. In this case

R(u, v) = (u+ v)i + (u− v)j + 2uvk (312)

and the point is
R0 = R(1, 1) = 2i + 2k (313)

At this point

∂R

∂u
=i + j + 2vk = i + j + 2k

∂R

∂v
=i− j + 2uk = i− j + 2k

(314)

so the normal is

N =
∂R

∂u
× ∂R

∂v
= det

 i j k
1 1 2
1 −1 2

 = 4i− 2k (315)

The equation of the tangent plane at this point is N · (R−R0) = 0. Since R−R0 =
(x− 2)i + yj + (z − 2)k this says

4(x− 2)− 2(z − 2) = 0 (316)

which can also be written z = 2x− 2.

example: Suppose our surface is the graph of a function z = φ(x, y). Then it can be
parametrized by

R(x, y) = xi + yj + φ(x, y)k (317)

We want to find the normal and the tangent plane to the graph at (x0, y0) This is the
point

R0 = R(x0, y0) = x0i + y0j + φ(x0, y0)k (318)

The derivatives at (x0, y0) are

∂R

∂x
=i + φx(x0, y0)k

∂R

∂y
=j + φy(x0, y0)k

(319)

and so the normal is

N =
∂R

∂x
× ∂R

∂y
= det

 i j k
1 0 φx(x0, y0)
0 1 φy(x0, y0)

 (320)
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which says
N = −φx(x0, y0)i− φy(x0, y0)j + k (321)

The equation of the tangent plane N · (R−R0) = 0 is then

−φx(x0, y0)(x− x0)− φy(x0, y0)(y − y0) + (z − φ(x0, y0)) = 0 (322)

This can also be written

z = φ(x0, y0) + φx(x0, y0)(x− x0) + φy(x0, y0)(y − y0) (323)

which agrees with our earlier definition of the tangent plane.

2.8 surface area

Let S be a surface parametrized by a function R(u, v) with (u, v) ∈ R. We assume the
function is one-to-one so it only covers S once. We want to define the area of S.

To do so we divide up R into a fine rectangular grid (see figure 18). The lines of
the grid are mapped to lines in the surface and this divides up the surface into little
pieces (no longer rectangles). Suppose the ith rectangle has lower left corner (ui, vi)
and dimensions ∆ui,∆vi. The image of this rectangle is a patch with corners

R(ui, vi), R(ui + ∆ui, vi), R(ui, vi + ∆vi), R(ui + ∆ui, vi + ∆vi)

The area of this patch is approximated as the area of the parallelogram spanned by

ai =R(ui + ∆ui, vi)−R(ui, vi)

bi =R(ui, vi + ∆vi)−R(ui, vi)
(324)

This area is
∆σi = |ai × bi| (325)

However since ∆ui and ∆vi are assumed small we have the approximations

ai ≈
∂R

∂u
(ui, vi)∆ui

bi ≈
∂R

∂v
(ui, vi)∆vi

(326)

Hence

∆σi ≈
∣∣∣∣∂R

∂u
(ui, vi)×

∂R

∂v
(ui, vi)

∣∣∣∣∆ui∆vi (327)

Now if h = maxi{∆ui,∆vi} is the maximum dimension in the grid we define

Area of S = lim
h→0

∑
i

∆σi

= lim
h→0

∑
i

∣∣∣∣∂R

∂u
(ui, vi)×

∂R

∂v
(ui, vi)

∣∣∣∣∆ui∆vi
=

∫
R

∣∣∣∣∂R

∂u
× ∂R

∂v

∣∣∣∣ dudv
(328)
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Figure 18:

This definition turns out to be independent of the particular parametrization we have
chosen.

example: Find the area of a spherical cap of radius a and angle α. In spherical
coordinates this is the surface described

r = a 0 ≤ φ ≤ α 0 ≤ θ ≤ 2π

We parametrize with spherical coordinates and take

R(φ, θ) = a sinφ cos θi + a sinφ sin θj + a cosφk (329)
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with 0 ≤ φ ≤ α, 0 ≤ θ ≤ 2π. Then we compute

∂R

∂φ
× ∂R

∂θ
= det

 i j k
a cosφ cos θ a cosφ sin θ −a sinφ
−a sinφ sin θ a sinφ cos θ 0


=a2 sin2 φ cos θi + a2 sin2 φ sin θj + a2 cosφ sinφk

(330)

Then ∣∣∣∣∂R

∂φ
× ∂R

∂θ

∣∣∣∣ =
√
a4 sin4 φ(cos2 θ + sin2 θ) + a4 cos2 φ sin2 φ

=a2 sinφ

√
sin2 φ+ cos2 φ

=a2 sinφ

(331)

and the area is

Area =

∫ 2π

0

∫ α

0

∣∣∣∣∂R

∂φ
× ∂R

∂θ

∣∣∣∣ dφ dθ
=

∫ 2π

0

∫ α

0

a2 sinφ dφ dθ

=a2
(∫ 2π

0

dθ
)(∫ α

0

sinφ dφ
)

=2πa2(1− cosα)

(332)

Note that if α = π the area is 4πa2 which is what we expect for the whole sphere.

2.9 surface integrals

We continue to consider a surface S parametrized by a function R(u, v) with (u, v) ∈ R.
Also let f(R) = f(x, y, z) be a function defined on S (and possibly elsewhere in R3).
We want to define the integral of f over S which will be written

∫
S f(R)dσ.

To define it we again divide up the parameter space into a rectangular grid. We
also let (ui, vi) be the corner point in the ith rectangle. (see figure 18 again). Then we
define ∫

S
f(R)dσ = lim

h→0

∑
i

f
(
R(ui, vi)

)
∆σi

= lim
h→0

∑
i

f
(
R(ui, vi)

) ∣∣∣∣∂R

∂u
(ui, vi)×

∂R

∂v
(ui, vi)

∣∣∣∣∆ui∆vi
=

∫
R
f
(
R(u, v)

) ∣∣∣∣∂R

∂u
× ∂R

∂v

∣∣∣∣ du dv
(333)
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For short one just has to remember

dσ =

∣∣∣∣∂R

∂u
× ∂R

∂v

∣∣∣∣ du dv (334)

A special case is with f(R) = 1 which gives∫
S
dσ =

∫
R

∣∣∣∣∂R

∂u
× ∂R

∂v

∣∣∣∣ du dv = Area of S (335)

example: Let S represent a thin hemispherical shell of uniform density which has
radius a and is centered on the orgin. We want to find the z-component of the center
of mass. Since it is a thin shell it is reasonable to represent in terms of surface integrals
and we take the definition

z̄ =

∫
S z dσ∫
S dσ

(336)

The hemisphere is parametrized as before by x = a sinφ cos θ, y = a sinφ sin θ, and
z = cosφ with 0 ≤ φ ≤ π/2 and 0 ≤ θ ≤ 2π. We also have as before

dσ =

∣∣∣∣∂R

∂φ
× ∂R

∂θ

∣∣∣∣ dφ dθ = a2 sinφ dφ dθ (337)

Then we can compute∫
S
z dσ =

∫ 2π

0

∫ π/2

0

(a cosφ)a2 sinφ dφ dθ

=a3
(∫ 2π

0

dθ
)(∫ π/2

0

cosφ sinφ dφ
)

=a3 · 2π · 1

2
=πa3

(338)

From our earlier calculation of area we have∫
S
dσ = 2πa2 (339)

Thus

z̄ =
πa3

2πa2
=
a

2
(340)

example: Suppose that the surface S is the graph of a function z = φ(x, y) with
(x, y) ∈ R. As noted previously we can parametrize S by

R(x, y) = xi + yj + φ(x, y)k (x, y) ∈ R (341)
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We also computed earlier

∂R

∂x
× ∂R

∂y
= −φxi− φyj + k (342)

Therefore

dσ =

∣∣∣∣∂R

∂x
× ∂R

∂y

∣∣∣∣ dxdy =
√

1 + φ2
x + φ2

y dxdy (343)

and so ∫
S
f(x, y, z)dσ =

∫
R
f(x, y, φ(x, y))

√
1 + φ2

x + φ2
y dxdy (344)

In particular

Area of S =

∫
S
dσ =

∫
R

√
1 + φ2

x + φ2
y dxdy (345)

2.10 change of variables in R2

Consider a special case of the surface integral in which the surface S lies in the xy plane.
Then the parametrization has the form x = x(u, v), y = y(u, v), z = 0 for (u, v) ∈ R.
In vector form

R(u, v) = x(u, v)i + y(u, v)j (346)

In this case

∂R

∂u
× ∂R

∂v
= det

 i j k
xu yu 0
xv yv 0

 = det

(
xu yu
xv yv

)
k

= det

(
xu xv
yu yv

)
k =

∂(x, y)

∂(u, v)
k

(347)

and so

dσ =

∣∣∣∣∂R

∂u
× ∂R

∂v

∣∣∣∣ dudv =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv (348)

Then our surface integral is evaluated as∫
S
f(x, y)dσ =

∫
R
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv (349)

However since S is flat the surface integral
∫
S f(x, y)dσ is the same as the area integral∫

S f(x, y)dA. It has been divided up in an irregular fashion but the result is the same.
Thus we have demonstrated the following change of variables formula:

Theorem 14 Let a region S ⊂ R2 be the image of a region R ⊂ R2 under a differen-
tiable invertible function x = x(u, v), y = y(u, v). Then∫

S
f(x, y)dA =

∫
R
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv (350)
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One can think of (u, v) as new coordinates for the region S. Then a short version
of the theorem is

dA =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv (351)

expressing the area element in the new coordinates.

As a special case consider polar coordinates x = r cos θ, y = r sin θ. Then

∂(x, y)

∂(r, θ)
= det

(
xr xθ
yr yθ

)
= det

(
cos θ −r sin θ
sin θ r cos θ

)
= r (352)

and so dA = rdrdθ. The change of variables formula is∫
S
f(x, y) dA =

∫
R
f(r cos θ, r sin θ) rdrdθ (353)

Here R is all points (r, θ) such that (x, y) = (r cos θ, r sin θ) is in S. Thus R is just S
described in polar coordinates.

example: Suppose S is the half-disc x2 + y2 ≤ 4, y > 0 and we want to evaluate∫
S
(3− x2 − y2)dA (354)

In polar coordinates S becomes the region R defined by 0 < r < 2, 0 < θ < π. Thus∫
S
(3− x2 − y2)dA =

∫
R

(3− r2)rdrdθ

=

∫ π

0

∫ 2

0

(3r − r3)drdθ

=π

[
3r2

2
− r4

4

]2

0

=2π

(355)

example: Let S be the region bounded by the lines x + y = −1, x + y = 3, 2x − y =
0, 2x− y = 4. (see figure 19) We want to evaluate the integral∫

S
(x+ y)dA (356)

We make a change of variables suggested by the boundary lines and set

u =x+ y

v =2x− y
(357)
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Figure 19:

The lines x + y = c are sent to the line u = c and the lines 2x − y = c are sent
to the lines v = c. Thus the region S is sent to the region R bounded by the lines
u = −1, u = 3, v = 0, v = 4.

For the change of variables formula we need the inverse function

x =
u+ v

3

y =
2u− v

3

(358)

which sends R back to S.
We compute

∂(x, y)

∂(u, v)
= det

(
1/3 1/3
2/3 −1/3

)
= −1

3
(359)
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and then ∫
S
(x+ y)dA =

∫
R
u

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv
=

∫ 4

0

∫ 3

−1

u · 1

3
dudv

=4

[
u2

6

]3

−1

=
16

3

(360)

2.11 change of variables in R3

In R3 the change of variables formula is the following:

Theorem 15 Let a region V ⊂ R3 be the image of a region R ⊂ R3 under a differen-
tiable invertible function x = x(u, v, w), y = y(u, v, w), z = z(u, v, w). Then∫

V
f(x, y, z)dV =

∫
R
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ dudvdw (361)

For short we can write

dV =

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ dudvdw (362)

Also note that in the special case f(x, y, z) = 1 we have

Volume of V =

∫
V
dV =

∫
R

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ dudvdw (363)

Proof. Divide up the region R into a grid of small boxes. The ith box will have a
corner (ui, vi, wi) and dimensions (∆ui,∆vi,∆wi). The volume of this box is ∆Vi =
∆ui∆vi∆wi.

Let ∆V ′i be the volume of image of the ith box. The image has corners xi =
x(ui, vi, wi), yi = y(ui, vi, wi), zi = z(ui, vi, wi) and curved sides. The volume is approx-
imately the volume of a parallelopiped spanned by vectors ai,bi, ci joining the corners.
(See figure 20). Thus

∆V ′i ≈ |ai · (bi × ci)| (364)

If we write the the funtion as

R(u, v, w) = x(u, v, w)i + y(u, v, w)j + z(u, v, w)k (365)

67



Figure 20:

then

ai = R(ui + ∆ui, viwi)−R(ui, viwi) ≈
∂R

∂u
(ui, vi, wi)∆ui (366)

and similarly

bi ≈
∂R

∂v
(ui, vi, wi)∆vi ci ≈

∂R

∂w
(ui, vi, wi)∆wi

Therefore

∆V ′i ≈
∣∣∣∣∂R

∂u
·
(
∂R

∂v
× ∂R

∂w

)∣∣∣∣∆ui∆vi∆wi
=

∣∣∣∣∣∣det

 xu yu zu
xv yv zv
xw yw zw

∣∣∣∣∣∣∆Vi =

∣∣∣∣∣∣det

 xu xv xw
yu yv yw
zu zv zw

∣∣∣∣∣∣∆Vi
=

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣∆Vi
(368)

So the Jacobian determinant tells how volumes increase.

68



Then we have∑
i

f(xi, yi, zi)∆V
′
i

=
∑
i

f(x(ui, vi, wi), y(ui, vi, wi), z(ui, vi, wi))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)
(ui, vi, wi)

∣∣∣∣∆Vi (369)

Now taking the limit as the grid size goes to zero we obtain the result (although the
expression on the left is not the standard Riemann integral).

special cases:

1. cylindrical coordinates:

x =r cos θ

y =r sin θ

z =z

(370)

In this case

dV =

∣∣∣∣∂(x, y, z)

∂(r, θ, z)

∣∣∣∣ drdθdz = rdrdθdz (371)

and ∫
V
f(x, y, z)dV =

∫
R
f(r cos θ, r sin θ, z)rdrdθdz (372)

where R is the region V described in cylindrical coordinates.

2. spherical coordinates:

x =ρ sinφ cos θ

y =ρ sinφ sin θ

z =ρ cosφ

(373)

In this case (check it!)

dV =

∣∣∣∣∂(x, y, z)

∂(ρ, φ, θ)

∣∣∣∣ dρdφdθ = ρ2 sinφdρdφdθ (374)

and∫
V
f(x, y, z)dV =

∫
R
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdφdθ (375)

where R is the region V described in spherical coordinates.
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example: Suppose we want to find the volume of the quarter-cone in a sphere V which
is described in spherical coordinates by 0 < ρ < 1, 0 < φ < π/4, 0 < θ < π/2. We
compute

Volume =

∫
V
dV

=

∫ π/2

0

∫ π/4

0

∫ 1

0

ρ2 sinφ dρ dφ dθ

=
(∫ 1

0

ρ2dρ
)(∫ π/4

0

sinφ dφ
)(∫ π/2

0

dθ
)

=
1

3
·
[
− cosφ

]π/4
0
· π/2

=
π

6

(
1− 1√

2

)
(376)

2.12 derivatives in R3

In R3 we continue to use the notation

R = xi + yj + zk = (x, y, z) (377)

A scalar is a function from R3 to R and has the form

u = u(R) = u(x, y, z) (378)

A scalar can be drawn (not very well) by shading points in R3 proportional to the value
of u at that point. Examples of quantites that can be represented by scalars are density
and temperature.

A vector field is function from R3 to R3 and has the form

v = v(R) =v1(R)i + v2(R)j + v3(R)k

=v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k
(379)

A vector field can be repesented by drawing a vector v(R) at the point R for some
representative points R. Examples of quantites that can be represented by scalars are
forces and the velocity of a fluid.

We want to define various derivatives of scalars and vector fields. These are specified
with the operator

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(380)

which is called del or nabla. If u is a scalar we define a vector field

gradient of u = ∇u = i
∂u

∂x
+ j

∂u

∂y
+ k

∂u

∂z
(381)
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If v = v1i + v2j + v3k is a vector field we define a scalar

divergence of v = ∇ · v =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
(382)

and also a vector field

curl of v =∇× v

= det

 i j k
∂/∂x ∂/∂y ∂/∂z
v1 v2 v3


=i

(
∂v3

∂y
− ∂v2

∂z

)
+ j

(
∂v1

∂z
− ∂v3

∂x

)
+ k

(
∂v2

∂x
− ∂v1

∂y

) (383)

Finally if u is a scalar we define

Laplacian of u = ∆u = ∇ · ∇u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
(384)

example: If u = x2 + xy + y2 + yz + z2 + zx then

∇u =(2x+ y + z)i + (2y + x+ z)j + (2z + z + y)k

∆u =∇ · ∇u = 2 + 2 + 2 = 6
(385)

example: If v = yz2i + xz2j + (2xyz + z)k then

∇ · v =2xy + 1

∇× v = det

 i j k
∂/∂x ∂/∂y ∂/∂z
yz2 xz2 (2xyz + z)


=(2xz − 2xz)i + (2zy − 2zy)j + (z2 − z2)k = 0

(386)

The derivatives satisfy various identities some of which we list. These hold for any
scalar u and any vector field v, assuming only they are twice continuously differentiable.

1. ∇×∇u = 0

2. ∇ · (∇× v) = 0

3. ∇ · (uv) = ∇u · v + u(∇ · v)

4. ∇ · (v ×w) = (∇× v) ·w − v · (∇×w)
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5. ∇× (uv) = u(∇× v) +∇u× v

6. ∇× (∇× v) = ∇(∇ · v)−∆v where ∆v = ∆v1i + ∆v2j + ∆v3k

proof of (1.). We compute

∇×∇u = det

 i j k
∂/∂x ∂/∂y ∂/∂z
∂u/∂x ∂u/∂y ∂u/∂z


=
( ∂2u

∂y∂z
− ∂2u

∂z∂y

)
i +
( ∂2u

∂z∂x
− ∂2u

∂x∂z

)
j +
( ∂2u

∂x∂y
− ∂2u

∂y∂x

)
k

=0

(387)

We also note that the chain rule

d

dt
u
(
x(t), y(t), z(t)

)
=
∂u

∂x

(
x(t), y(t), z(t)

)dx
dt

+
∂u

∂y

(
x(t), y(t), z(t)

)dy
dt

+
∂u

∂z

(
x(t), y(t), z(t)

)dz
dt

(388)

can be written in a vector notation as

d

dt
u(R(t)) = ∇u(R(t)) · dR

dt
(389)

2.13 gradient

One of our goals is to interpret the gradient, divergence, and curl. Here we give three
interpretations of the gradient.

1. (∇u)(R0) is normal to the level surface u = constant through R0, i.e the surface
u(R) = u(R0).

To see this let R(t) be any curve in the surface with R(0) = R0. Thus

u(R(t)) = u(R0) (390)

Taking the derivative with respect to t and using the chain rule gives

(∇u)(R(t)) ·R′(t) = 0 (391)

At t = 0 this says
(∇u)(R0) ·R′(0) = 0 (392)

Any tangent vector to the surface at R0 has the form R′(0) for some curve through
R0. Thus (∇u)(R0) is normal to any tangent vector at R0 and hence is normal
to the surface. See figure 21.
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Figure 21:

2. If n is a unit vector, then (∇u)(R0) · n is the rate of change of u at R0 in the
direction n, also called the directional derivative.

To see this use the chain rule to calculate the rate of change as

d

dt
u(R0 + tn)

∣∣∣
t=0

= (∇u)(R0 + tn) · d
dt

(R0 + tn)
∣∣∣
t=0

= (∇u)(R0) · n (393)

3. (∇u)(R0) is the direction of greatest increase for u at R0.

To see this consider that the direction of greatest increase is the unit vector n
which maximizes the directional derivative (∇u)(R0) · n. This occurs when n is
parallel to (∇u)(R0).

problem Find the normal to the surface which is the graph of z = f(x, y)

solution The surface is

u(x, y, z) = −f(x, y) + z = 0 (394)
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A normal is
∇u = uxi + uyj + uzk = −fxi− fyj + k (395)

as before.

problem Find the direction of greatest change for u = x2 + 2xy + y2 + 3z2 at the
point (1, 1, 1), i.e. find a unit vector.

solution The gradient at this point is

∇u = (2x+ 2y)i + (2x+ 2y)j + 6zk = 4i + 4j + 6k (396)

A unit vector in this direction is

n =
∇u
|∇u|

=
4i + 4j + 6k√

68
(397)

2.14 divergence theorem

The divergence is important because it appears in the following theorem.

Theorem 16 (Divergence Theorem). Let R be a solid region in R3 with boundary sur-
face S. Let n be the unit outward normal on S. Then for any continuously differentiable
vector field v on R ∫

R
∇ · v dV =

∫
S

v · n dσ (398)

Proof. Suppose n = n1i + n2j + n3k. If suffices to show that∫
R

∂v1

∂x
dV =

∫
S
v1n1dσ∫

R

∂v2

∂y
dV =

∫
S
v2n2 dσ∫

R

∂v3

∂z
dV =

∫
S
v3n3 dσ

(399)

Then adding them together gives the result.
We prove the last, the others are similar. To prove it suppose that R if the region

between the graphs of two functions. It is defined by φ(x, y) ≤ z ≤ ψ(x, y) with with
(x, y) in some region E in the plane. Then we have∫

R

∂v3

∂z
dV =

∫
E

(∫ ψ(x,y)

φ(x,y)

∂v3

∂z

)
dxdy

=

∫
E

(v3(x, y, ψ(x, y))− v3(x, y, φ(x, y)) dxdy

(400)
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Figure 22:

We need to show that
∫
S v3n3 dσ has the same expression. Now S has three parts

S1,S2,S3, see figure 22, and∫
S
v3n3 dσ =

∫
S1
v3n3 dσ +

∫
S2
v3n3 dσ +

∫
S3
v3n3 dσ (401)

The surface S1 is the graph of z = ψ(x, y) and a normal vector is N = −ψxi−ψyj+k.
This is an upward normal since the third component is positive. On this surface upward
is outward and so the unit outward normal is

n =
N

|N|
=
−ψxi− ψyj + k√

1 + ψ2
x + ψ2

y

(402)

Also on S1 we have

dσ =
√

1 + ψ2
x + ψ2

y dxdy (403)
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Therefore∫
S1
v3n3 dσ =

∫
E

v3(x, y, ψ(x, y))
1√

1 + ψ2
x + ψ2

y

√
1 + ψ2

x + ψ2
y dxdy

=

∫
E

v3(x, y, ψ(x, y)) dxdy

(404)

The surface S2 is the graph of z = φ(x, y) and an upward normal vector is N =
−φxi− φyj + k. On this surface upward is inward and so the unit outward normal is

n = − N

|N|
=
φxi + φyj− k√

1 + φ2
x + φ2

y

(405)

Also on S2 we have

dσ =
√

1 + φ2
x + φ2

y dxdy (406)

Therefore∫
S2
v3n3 dσ =

∫
E

v3(x, y, ψ(x, y))
−1√

1 + φ2
x + φ2

y

√
1 + φ2

x + φ2
y dxdy

=−
∫
E

v3(x, y, φ(x, y)) dxdy

(407)

On the surface S3 we have n3 = 0 and so
∫
S3 v3n3 dσ = 0

Adding the contributions from the three surfaces gives the desired result∫
S
v3n3 dσ =

∫
E

(v3(x, y, ψ(x, y))− v3(x, y, φ(x, y)) dxdy (408)

The divergence theorem can be used in various ways. Here we just offer a couple of
examples illustrating what it says.

example Let R be a sphere of radius a with surface S. Check the divergence theorem
for this region and the vector field v(R) = R = xi + yj + zk.

For the volume integral note that ∇ ·R = 3 so∫
R
∇ · v dV = 3

∫
R
dV = 3× volume of R = 3

(
4

3
πa3

)
= 4πa3 (409)

On the other hand for a sphere the unit normal to the surface S at R is n = R/|R|.
Hence on S we have v · n = R ·R/|R| = |R| = a. Therefore∫

S
v · ndσ = a

∫
S
dσ = a area of S = a

(
4πa2

)
= 4πa3 (410)
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which agrees with the volume integral.

example Let R be the region defined by 0 ≤ z ≤ 1 − x2 − y2 with x2 + y2 ≤ 1. Let
S be the boundary of R. Check the divergence theorem for this region and the vector
field v = 1

2
(x2 + y2)k.

The surface has two pieces. The top piece called S1 is the graph of the function
z = 1− x2 − y2 above the disc x2 + y2 ≤ 1. A normal on this surface is

N = −∂z
∂x

i− ∂z

∂y
j + k = 2xi + 2yj + k (411)

This points upward which is outward for this surface. Thus the unit outward normal is

n =
N

|N|
=

2xi + 2yj + k√
1 + 4x2 + 4y2

(412)

and on the surface we have

v · n =
1

2

x2 + y2√
1 + 4x2 + 4y2

(413)

Futhermore we have for this surface

dσ =
√

1 + 4x2 + 4y2dxdy (414)

Combining the above we have∫
S1

v · n dσ =

∫
x2+y2≤1

1

2

x2 + y2√
1 + 4x2 + 4y2

√
1 + 4x2 + 4y2dxdy

=

∫
x2+y2≤1

1

2
(x2 + y2)dxdy

=

∫
r≤1

1

2
r2 · rdrdθ

=
1

2

∫ 1

0

r3dr

∫ 2π

0

dθ

=
1

2
· 1

4
· (2π) =

π

4

(415)

The bottom piece is called S2. It is the disc x2 + y2 ≤ 1, z = 0. The unit outward
normal is n = −k, so we have

v · n = −1

2
(x2 + y2) (416)

The surface is flat so dσ = dxdy and we have∫
S2

v · n dσ = −
∫
x2+y2≤1

1

2
(x2 + y2)dxdy = −π

4
(417)
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Combining the two pieces we have for the surface integral∫
S

v · n dσ =

∫
S1

v · n dσ +

∫
S2

v · n dσ =
π

4
− π

4
= 0 (418)

For the volume integral we note that ∇ · v = ∂/∂z
(

(x2 + y2)/2
)

= 0 and so∫
R
∇ · v dV = 0 (419)

which agrees with the surface integral.

remark: In evaluating surface integrals we are frequently canceling awkward square
roots. We can avoid this as follows. If S is a surface with unit normal vector n define
a formal symbol d~σ = ndσ and then∫

S
v · n dσ =

∫
S

v · d~σ (420)

If S is parametrized by a function R(u, v) then

n =± Ru ×Rv

|Ru ×Rv|
dσ =|Ru ×Rv| dudv
d~σ =± (Ru ×Rv) dudv

(421)

If S is the graph of a function z = f(x, y) then

n =± −fxi− fyj + k√
1 + f 2

x + f 2
y

dσ =
√

1 + f 2
x + f 2

y dxdy

d~σ =± (−fxi− fyj + k) dxdy

(422)

In either case the square roots are gone from d~σ. The only difficulty is that one must
still think about which normal one wants to determine whether to take the plus sign
or the minus sign.

2.15 applications

We give some applications of the divergence theorem. In the first we answer the question
”what is divergence?”. The others are derivations of some basic partial differential
equations.
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Figure 23:

A. steady fluid fow The steady (i.e. time independent) flow of a fluid is discribed
by the following quantities:

v(R) = velocity of the fluid at R (cm/sec)

ρ(R) = density of the fluid at R (gr/cm3)

u(R) = ρ(R)v(R) = mass flow density (gr/cm2 · sec)

Also if S is a surface with unit normal n we define∫
S

u · n dσ = flux of u over S in direction n

We want to interpret this flux and also the divergence of u. (They are related).
Pick a point R on the the surface S, let ∆σ be a small piece of surface around R.

Then (see figure 23)

mass through ∆σ in time ∆t (gr)

≈ density at R× volume through ∆σ in time ∆t

≈ρ(R)×∆σ × (v(R)∆t) · n
=u(R) · n ∆σ∆t

(423)
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If we divide by ∆t we get

rate of mass flow thru ∆σ = u(R) · n ∆σ (gr/sec)

Now sum over pieces ∆σi covering the surface S and take the limit as the partition
becomes fine. This gives

rate of mass flow thru S = lim
∑
i

u(Ri) · ni ∆σi =

∫
S

u(R) · n dσ (gr/sec)

Thus we have an interpretation of the flux of u over S. It is the rate of mass flow
through S.

Now for the divergence of u at any point R let Dε be a sphere of radius ε around
R. let Sε be the surface of that sphere with outward normal n. Then by the divergence
theorem

(∇ · u)(R) = lim
ε→0

1

Vol Dε

∫
Dε

∇ · u dV

= lim
ε→0

1

Vol Dε

(∫
Sε

u · n dσ

) (424)

This is the flux divided by the volume. Thus the divergence is the rate of outward mass
flow per unit volume (gr/ cm3· sec ). A large divergence at a point means a lot of fluid
is entering the system at that point.

B. fluid dynamics
Again we consider fluid flow, but now the velocity v(R, t), the density ρ(R, t), and

the mass flow density u(R, t) = ρ(R, t)v(R, t) all depend on the time t.
In our fluid consider any region R with surface S and outward normal n. Conser-

vation of mass says that

rate of mass flow out of S = rate of decrease of mass in R (425)

which means that ∫
S

u · n dσ = − d

dt

(∫
R
ρ(R, t) dV

)
(426)

Use the divergence theorem on the left, and differentiate under the integral sign on the
right to obtain ∫

R
∇ · u dV = −

∫
R

∂ρ

∂t
dV (427)

which is the same as ∫
R

(
∇ · u +

∂ρ

∂t

)
dV = 0 (428)
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Since this holds for an arbitrary region R it must be that

∇ · u +
∂ρ

∂t
= 0 (429)

which is also written

∇ · (ρv) +
∂ρ

∂t
= 0 (430)

This is the continuity equation which must be satisfied by any flow.

We can rewrite this as

ρ∇ · v +∇ρ · v +
∂ρ

∂t
= 0 (431)

Now define the total derivative of ρ to be

Dρ

Dt
=
∂ρ

∂t
+∇ρ · v (432)

Then the continuity equation can be written as

Dρ

Dt
+ ρ ∇ · v = 0 (433)

The total derivative has the interpretation

Dρ

Dt
= rate of change of the density at a test particle moving in the fluid (434)

To see that this is true let R(t) be the trajectory of the test particle. Moving with
the fluid means that dR/dt = v(R(t), t). The rate of change of the density at the test
particle is by the chain rule

d

dt
ρ(R(t), t) =∇ρ(R(t), t) · dR

dt
+
∂ρ

∂t
(R(t), t)

=∇ρ(R(t), t) · v(R(t), t) +
∂ρ

∂t
(R(t), t)

=
Dρ

Dt
(R(t), t)

(435)

as claimed.
The field is incompressible if the test particle sees no change in the density, that is

Dρ/Dt = 0 (436)

By the second form of the continuity equation this is the same as

∇ · v = 0 (437)
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C. heat equation For any object let T (R, t) be the temperature of the object
at position R and time t. We want to derive an equation which describes how the
temperature evolves in time. For this we also need to consider the heat (energy) in the
system. The heat density (calories/ cm3) at R, t is proportional to the temperature
there and has the form cρT (R, t) where the specific heat c is a constant depending on
the material and ρ is the mass density, assumed constant. We also need the heat flow
u(R, t) at R, t. This is analagous to the mass flow in the previous examples but is now
the flow of energy (calories/ cm2· sec).

In our object consider any region R with surface S and outward normal n. Con-
servation of energy says that

heat flow out of S = rate of decrease of heat in R (438)

which means that ∫
S

u · n dσ = − d

dt

(∫
R
cρT (R, t) dV

)
(439)

Again use the divergence theorem on the left, and differentiate under the integral sign
on the right to obtain ∫

R
∇ · u dV = −

∫
R
cρ
∂T

∂t
dV (440)

which is the same as ∫
R

(
∇ · u + cρ

∂T

∂t

)
dV = 0 (441)

Since this holds for any region R it must be that

∇ · u + cρ
∂T

∂t
= 0 (442)

Now we need another fact. This is the thermal conduction law which says that the
heat flow is proportional to the negavtive gradient of the temperature:

u = −k∇T (443)

Here k is a positive constant called the thermal conductivity . The law says that heat
flows in the direction of greatest temperature decrease. Inserting this in the above
equation gives

cρ
∂T

∂t
− k∆T = 0 (444)

This is called the heat equation . If the temperature is independent of time then this
becomes

∆T = 0 (445)

which is known as Laplace’s equation.
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2.16 more line integrals

We define a line integral of vector fields. Let C be a directed curve parametrized by
R(t), a ≤ t ≤ b and let v(R) be a vector field defined on C. We define∫

C
v · dR =

∫ b

a

v(R(t)) · dR
dt

dt (446)

Thus we replace the curve by the parameter and interpret dR = (dR/dt)dt. This
definition turns out to be independent of parametrization as long as we respect the
direction of the curve.

Let

T =
dR

dt
/|dR
dt
| (447)

be a unit tangent vector to the curve. Then the the vector line integral is related to a
scalar line integral by ∫

C
v · dR =

∫
C
v ·T ds (448)

Thus we are integrating the tangential component of v along the curve. To see that it
is true compute ∫

C
v ·T ds =

∫ b

a

v(R(t)) · dR/dt
|dR/dt|

|dR/dt| dt

=

∫ b

a

v(R(t)) · dR/dt dt

=

∫
C
v · dR

(449)

problem Let C be a straight line from a = i+k to b = 2i+j+3k. Let v(R) = xi+yzk.
Evlauate

∫
C v · dR.

solution: C can be parametrized by R(t) = (1− t)a + tb with 0 ≤ t ≤ 1 which is the
same as

R(t) = (t+ 1)i + tj + (2t+ 1)k (450)

Then

dR =
dR

dt
dt = (i + j + 2k)dt (451)

Also
v(R(t)) = (t+ 1)i + t(2t+ 1)k (452)

Then we compute∫
C
v · dR =

∫ 1

0

(
(t+ 1) + 2t(2t+ 1)

)
dt =

∫ 1

0

(1 + 3t+ 4t2)dt =
23

6
(453)
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We list some properties of line integrals

• For any vector fields v,w∫
C
(v + w) · dR =

∫
C
v · dR +

∫
C
w · dR (454)

• For a constant α ∫
C
αv · dR = α

∫
C
v · dR (455)

• Let C2 start where C1 finishes and let C1 + C2 be the curve which first traverses C1

and then traverses C2. Then∫
C1+C2

v ·R =

∫
C1

v ·R +

∫
C2

v ·R (456)

• Let −C be the curve C traversed in the opposite direction. Then∫
−C

v ·R = −
∫
C
v ·R (457)

(For scalar integrals on the other hand we have
∫
−C fds =

∫
C fds)

application: Let F(R) be the force applied to an object at position R. Then the line
integral

∫
C F(R) · dR is interpreted as the work done (energy expended) in moving the

object along C.

another notation If v = v1i + v2j + v3k and dR = dxi + dyj + dzk then

v · dR = v1dx+ v2dy + v3dz (458)

This is called a differential form. For us it is just a formal symbol whose integral has
a meaning, but it can be given a separate precise meaning in higher mathematics. In
this notation our definition of the line integral of v along a curve C parametrized by
R(t) = x(t)i + y(t)j + z(t)k with a ≤ t ≤ b is∫

C
v1dx+ v2dy + v3dz

=

∫ b

a

(
v1(x(t), y(t), z(t))

dx

dt
+ v2(x(t), y(t), z(t))

dy

dt
+ v3(x(t), y(t), z(t))

dz

dt

)
dt

(459)

In other words we interpret dx as (dx/dt)dt and so forth.
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Figure 24:

This notation is also used for R2. If the curve C is parametrized by x = x(t), y = y(t)
with a ≤ t ≤ b and M(x, y) and N(x, y) are functions on C, then∫

C
Mdx+Ndy =

∫ b

a

(
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

)
dt (460)

definitions A curve C is simple if it does not intersect itself (except possibly at the
endpoints). A curve is closed if two endpoints are the same point. See figure 24 for
examples.

Theorem 17 (Green’s Theorem). Let C be a simple closed curve in the plane traversed
counterclockwise with interior R. If M,N are continuously differentiable everywhere
in R then ∫

C
Mdx+Ndy =

∫
R

(
∂N

∂x
− ∂M

∂y

)
dxdy (461)

Proof. Suppose the region R lies between the graphs of two functions y = p(x) and
y = q(x) with a ≤ x ≤ b and p(x) ≤ q(x). Call these two curves C1 and C2 both
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Figure 25:

traversed in the direction of increasing x. Then C = C1 − C2. (see figure 25). We
compute ∫

R
−∂M
∂y

dxdy = −
∫ b

a

[∫ q(x)

p(x)

∂M

∂y
(x, y)dy

]
dx

=−
∫ b

a

(M(x, q(x))−M(x, p(x))dx

=−
∫
C2
Mdx+

∫
C1
Mdx

=

∫
C1−C2

Mdx =

∫
C
Mdx

(462)

Here we have used that C2 can be parametrized by x = x, y = q(x), a ≤ x ≤ b and that
C1 can be parametrized by x = x, y = p(x), a ≤ x ≤ b.

Similarly one shows that ∫
R

∂N

∂x
dxdy =

∫
C
Ndy (463)

Adding the two equations gives the result.
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Corollary: If ∂N/∂x = ∂M/∂y everywhere inside a simple closed curve C then∫
C
Mdx+Ndy = 0 (464)

Corollary: With M = −y/2 and N = x/2

1

2

∫
C
−ydx+ xdy =

∫
R
dxdy = area of R (465)

problem Find the area inside the ellipse

x2

a2
+
y2

b2
= 1 (466)

solution: The ellipse can be parametrized by x = a cos t, y = b sin t with 0 ≤ t ≤ 2π.
Then we have

dx = −a sin tdt dy = b cos tdt (467)

Hence

Area =
1

2

∫
C
−ydx+ xdy

=
1

2

∫ 2π

0

(ab sin2 t+ ab cos2 t)dt

=
1

2

∫ 2π

0

ab dt = πab

(468)

2.17 Stoke’s theorem

A surface S is orientable if there is a continuous family of unit normal vectors n. All the
surfaces we encounter will be orientable. An example of a surface that is not orientable
is the Mobius strip.

Theorem 18 (Stoke’s theorem). Let S be an orientable surface with continuous unit
normal n and boundary C which is a simple closed curve. Then for any continuously
differentiable vector field v on S∫

S
(∇× v) · n dσ =

∫
C
v · dR (469)

provided C is traversed in a right-handed sense relative to n. (see figure 26)
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Figure 26:

Proof. We have

(∇× v) · n = det

 i j k
∂/∂x ∂/∂y ∂/∂z
v1 v2 v3

 · n

=
(∂v3

∂y
− ∂v2

∂z

)
n1 +

(∂v1

∂z
− ∂v3

∂x

)
n2 +

(∂v2

∂x
− ∂v1

∂y

)
n3

(470)

We pick out the the v1 part of this and show∫
S

(∂v1

∂z
n2 −

∂v1

∂y
n3

)
dσ =

∫
C
v1dx (471)

There will be similar equations for the v2 part and the v3 and when we add them
together we get the result.

Suppose that S is given as the graph of a function z = φ(x, y) with (x, y) in E and
upward normal n. (see figure 27). Then

ndσ = d~σ = (−φxi− φyj + k) dxdy (472)
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Figure 27:

and so ∫
S

(∂v1

∂z
n2 −

∂v1

∂y
n3

)
dσ

=

∫
E

(∂v1

∂z
(x, y, φ(x, y))(−φy(x, y))− ∂v1

∂y
(x, y, φ(x, y)) · 1

)
dxdy

=

∫
E

− ∂

∂y

[
v1(x, y, φ(x, y))

]
dxdy

=

∫
C′
v1(x, y, φ(x, y))dx

=

∫
C
v1(x, y, z)dx

(473)

Here C ′ is a boundary curve for E and the second to last step follows by Green’s
theorem. The last step follows since if (x, y) traverses C ′ then (x, y, φ(x, y)) traverses
C.

example: Let S be the graph of the paraboloid z = 1− x2 − y2 which lies above the
disc x2 + y2 ≤ 1 and let n be the the upward normal. Also let v = yi + zj + xk. We
check Stokes theorem in this case.
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First for the surface integral we have

ndσ = d~σ = (−∂z
∂x

i− ∂z

∂y
j + k) dxdy = (2xi + 2yj + k)dxdy (474)

Also

∇× v = det

 i j k
∂/∂x ∂/∂y ∂/∂z
y z x

 = −i− j− k (475)

Therefore ∫
S
(∇× v) · d~σ =

∫
x2+y2≤1

(−2x− 2y − 1)dxdy

=

∫ 2π

0

∫ 1

0

(−2r cos θ − 2r sin θ − 1) rdrdθ

=2π

∫ 1

0

(−r)dr = −π

(476)

For the line line integral note that C, the boundary of S, is the circle x2 + y2 =
1, z = 0. We want to go around it counterclockwise so we parametrize by

R = cos t i + sin t j 0 ≤ t ≤ 2π (477)

Then

dR =(− sin t i + cos t j) dt

v = sin t i + cos t k
(478)

and so ∫
C
v · dR =

∫ 2π

0

(− sin2 t)dt = −π (479)

as expected.

circulation: Suppose v(R) describes the velocity of a fluid at R, and C is a directed
simple closed curve. We define

circulation of v around C =

∫
C
v · dR =

∫
C
(v ·T)ds (480)

This tells how much the fluid is circulating around the curve. See figure 28.

what is curl? Now we can answer this question, still thinking of v(R) as the velocity
of a fluid at R. Given R and a unit vector n, let Sε be the disc centered on R with
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Figure 28: circulation

radius ε and normal n, and let Cε be the circle which is the boundary of Sε. Then we
have by Stoke’s theorem

(∇× v)(R) · n = lim
ε→0

1

area of Sε

∫
Sε

(∇× v) · n dσ

= lim
ε→0

1

area of Sε

∫
Cε

v · dR

= circulation density of v around n at R.

(481)

general remark: In thinking about the fundamental theorem of calculus, Green’s
theorem, Stoke’s theorem, and the divergence theore note that they all have the form∫

(region)

(derivative of function) =

∫
(boundary of region)

(function) (482)

This may help in remembering them. It also suggests that there is a more general
theorem of this form which holds in any dimension. This is true. It is also called
Stoke’s theorem and uses a general theory of differential forms.
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2.18 still more line integrals

We investigate when line integrals are independent of the path.

Theorem 19 If v = ∇u and C is any curve from R0 to R1 then∫
C
v · dR =

∫
C
∇u · dR = u(R1)− u(R0) (483)

So in this case the integral is independent of the path taken from R0 to R1. We
can write without ambiguity. ∫ R1

R0

v · dR (484)

Another way to write this is to define the differential du by

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz = ∇u · dR (485)

Then the theorem says that for any path C from R0 to R1∫
C
du = u(R1)− u(R0) (486)

Proof. Suppose C is parametrized by R(t) with a ≤ t ≤ b. Then R(a) = R0 and
R(b) = R1 and we have by the chain rule∫

C
∇u · dR =

∫ b

a

∇u(R(t)) · dR
dt

dt

=

∫ b

a

d

dt

(
u(R(t))

)
dt

=u(R(b))− u(R(a))

=u(R1)− u(R0)

(487)

application: Suppose F(R) is the force applied to an object at R. As noted before∫
C F · dR is the work done in moving the object along C. If C goes from R0 to R1 and

F = ∇u then the work is u(R1) − u(R0) independent of C. In this case one says that
the force is conservative and u is called the potential energy .

For example the electrostatic force around a charge at the origin has the form

F(R) = −C R

|R|3
(488)
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This is a conservative force with potential (check it)

u(R) =
C

|R|
(489)

definition: A region R in R3 is connected if any two points in R can be joined by
a continuous curve in R.

Theorem 20 Let v be a vector field in a connected region R in R3. Then the following
statements are equivalent (i.e. either they are all true or all false)

1.
∫
C v · dR = 0 for any closed curve C in R.

2.
∫
C v · dR = 0 is independent of the path C in R (C with fixed endpoints in R).

3. v = ∇u for some function u in R.

Proof. First we show that (1.) implies (2.). If (1.) is true and C1 and C2 are any two
paths from R0 to R1 then C1 − C2 is a closed curve and so∫

C1
v · dR−

∫
C2

v · dR =

∫
C1−C2

v · dR = 0 (490)

Thus (2.) is true.
By a similar argument one can show that (2.) implies (1.). Thus (1.) and (2.) are

equivalent.
We already know that (3.) implies (2.). Thus we need only show that (2.) implies

(3.). Assuming (2.) we define for any point R0 in R

u(R) =

∫ R

R0

v(R′) · dR′ (491)

Because R is connected there are paths from R0 to R and because integrals are inde-
pendent of path we do not have to specifiy which one.
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We have to show that the gradient of u is v. We compute

∂u

∂x
(R) = lim

h→0

1

h
(u(R + hi)− u(R))

= lim
h→0

1

h

[ ∫ R+hi

R0

v(R′) · dR′ −
∫ R

R0

v(R′) · dR′
]

= lim
h→0

1

h

[ ∫ R+hi

R0

v(R′) · dR′ +
∫ R0

R

v(R′) · dR′
]

= lim
h→0

1

h

[ ∫ R+hi

R

v(R′) · dR′
]

= lim
h→0

1

h

[ ∫ h

0

v1(R + ti)dt
]

=v1(R)

(492)

Here in the second to last step we have chosen a particular path from R to R + hi,
namely R′ = R + ti with 0 ≤ t ≤ h and dR′ = idt.

Similarly one shows that (∂u/∂y)(R) = v2(R) and (∂u/∂z)(R) = v3(R) and hence
∇u(R) = v(R). This completes the proof.

example: Consider again the vector field

v = yz2i + xz2j + (2xyz + z)k (493)

Are integrals
∫
C v · dR independent of path in R3? According to the theorem this is

the same as asking whether v = ∇u. If there is such a u it must satisfy

∂u

∂x
=yz2

∂u

∂y
=xz2

∂u

∂z
=2xyz + z

(494)

The first equation says that u = xyz2 + h(y, z) for some function h. Taking derivatives
of this we have

∂u

∂y
=xz2 +

∂h

∂y
∂u

∂z
=2xyz +

∂h

∂z

(495)

Comparing this with the second and third equations above yields

∂h

∂y
= 0

∂h

∂z
= z (496)
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The second equation says h(y, z) = 1
2
z2 + g(y) for some function g. But then the first

equation implies that g(y) = C for some constant C. Thus h(y, z) = 1
2
z2 + C for some

constant C. Therefore

u = xyz2 +
1

2
z2 + C (497)

is the function we are looking for and the answer is yes.

The theorem actually holds in any dimension. We state the theorem for R2 in the
language of differential forms.

Theorem 21 Let M,N be functions in a connected region R in R2. Then the following
statements are equivalent

1.
∫
CMdx+Ndy = 0 for any closed curve C in R.

2.
∫
CMdx+Ndy = 0 is independent of the path C in R.

3. M = ∂u/∂x and N = ∂u/∂y for some function u in R, i.e. Mdx+Ndy = du.

definition: A region R is simply connected if it is connected and every simple closed
curve can be continuously shrunk to a point without leaving R. Figure 29 gives some
examples.

Theorem 22 If v is a continuously differentiable vector field in a simply connected
region R then the conditions (1.), (2.), (3.) of the last two theorems are equivalent to

(4.)

{
∇× v = 0 in R ⊂ R3

∂N/∂x− ∂M/∂y = 0 in R ⊂ R2
(498)

Proof. We give the proof for R3. (3.) says that v = ∇u and we know that this implies
∇× v = 0 which is (4.).

On the other hand suppose that (4.) is true. Since R is simply connected every
simple closed curve C in R is the boundary of a surface S in R - the curves shrinking
down C sweep out the surface. Then by Stokes theorem∫

C
v · dR =

∫
S
(∇× v) · n dσ = 0 (499)

Thus (1.) is true for simple closed curves. But closed curve that is not simple can be
broken up into pieces that are simple. Thus (1.) is true in general.
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Figure 29:

example Let v = yi + 2xj + zk. Are line integrals
∫
C v · dR independent of path in

R3? Since R3 is simply connected we just have to check whether the curl is zero. We
have

∇× v =

 i j k
∂/∂x ∂/∂y ∂/∂z
y 2x z

 = k (500)

Since this is not zero the answer is no.

example Let M = −y/(x2 +y2) and N = x/(x2 +y2). Are line integrals
∫
CMdx+Ndy

independent of path

1. in R2? Actually we cannot ask the question in R2 since M,N are not defined at
the origin.
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2. in R2 with the origin deleted? This is not simply connected so we cannot use the
test ∂N/∂x− ∂M/∂y = 0. No conclusion.

3. in R2 with the negative x-axis deleted? This is simply connected so we can apply
the test and if we do we find that ∂N/∂x− ∂M/∂y = 0 (check it). So the answer
is yes.

We can say more. Since we do have path independence there must be a u so that
M = ∂u/∂x and N = ∂u/∂y. By solving these equations one finds

u(x, y) = tan−1
(y
x

)
= polar angle of (x, y) (501)

This works in the region (3.), but not in the region (2.) since the function is not
continuous across the negative x-axis. It takes the value π from above and −π from
below. In fact there is no function in the entire region (2.) and the answer to the
question is no.

definitions A vector field v is irrotational if ∇×v = 0. We have seen that in a simply
connected region this occurs if and only if v = ∇u for some scalar u. A vector field is
solenoidal is ∇ · v = 0. One can show that in a simply connected region this occurs if
and only if v = ∇×w for some vector field w.

It is a theorem that in a simply connected region every vector field v can be written
in the form v = v1 + v2 where v1 is solenoidal and v2 is irrotational.

2.19 more applications

We discuss some applications to electromagnetism. The players in our drama are an
electric field E(R, t), a magnetic field B(R, t), a current density j(R, t) and a charge
density ρ(R, t). These are time dependent vector fields, except the charge density which
is a time dependent scalar.

The charge density and the current obey the charge conservation equation

∇ · j +
dρ

dt
= 0 (502)

This can be derived just as we derived the continuity equation for fluid flow. The fields
obey Maxwell’s equations:

∇ · E =4πρ

∇ ·B =0

∇× E =− 1

c

∂B

∂t

∇×B =
1

c

∂E

∂t
+

4π

c
j

(503)

97



Here c is a constant of nature (3× 1010cm/sec).

We work out some special cases, assuming we are in a simply connected region.

1. Suppose B is constant in the time t. Then third equation says that ∇× E = 0.
This means that E is the gradient of a scalar. We write

E = −∇Φ (504)

and Φ is called the electromagnetic potential. Inserting this equation into the
first gives

−∆Φ = 4πρ (505)

This known as Poisson’s equation. It is easier to solve than the full Maxwell
system and a great deal of mathematics is devoted to its solution. Especially
important is the case ρ = 0 in which case we again have Laplace’s equation:

∆Φ = 0 (506)

2. The second equation ∇ ·B = 0 implies that

B = ∇×A (507)

for some vector field A known as the magnetic potential. The potential can be
written A = A1 + A2 where ∇ · A1 = 0 and ∇ × A2 = 0. However A2 does
not contribute to B so we can take A = A1 and still have B = ∇ ×A . Then
∇ ·A = ∇ ·A1 = 0.

If E is constant in time, then the last Maxwell equation becomes

∇× (∇×A) =
4π

c
j (508)

But by one of our vector identities

∇× (∇×A) = ∇(∇ ·A)−∆A = −∆A (509)

thus our equation becomes

−∆A =
4π

c
j (510)

Thus each component of A satisfies Poisson’s equation and so is amenable to
solution.

3. Now suppose both ρ and j are zero. Then the equations become

∇ · E =0

∇ ·B =0

∇× E =− 1

c

∂B

∂t

∇×B =
1

c

∂E

∂t

(511)

98



Taking the curl of the last equation, and using the third yields

∇× (∇×B) =
1

c

∂

∂t
(∇× E) = − 1

c2

∂2B

∂t2
(512)

But on the other hand

∇× (∇×B) = ∇(∇ ·B)−∆B = −∆B (513)

Comparing the last two gives

1

c2

∂2B

∂t2
−∆B = 0 (514)

This is called the wave equation and has also been studied at length. By a similar
argument we can also show the E obeys the same equation:

1

c2

∂2E

∂t2
−∆E = 0 (515)

A characteristic feature of solutions of these equations is that disturbances propa-
gate with speed c. But c is the speed of light. This makes it possible to interpret
light as waves in the electromagnetic field. This was one of the triumphs of
Maxwell’s equations.

2.20 general coordinate systems

Consider a differentiable invertible function

x =x(u1, u2, u3)

y =y(u1, u2, u3)

z =z(u1, u2, u3)

(516)

from some region R′ ⊂ R3 onto R ⊂ R3. Then u = (u1, u2, u3) in R′ can be considered
as new coordinates for R. These were considered previously in our change of variables
formula for R3. In a vector notation we have

R(u) = x(u1, u2, u3)i + y(u1, u2, u3)j + z(u1, u2, u3)k (517)

As before we let ∂R/∂ui be the tangent vector to a ui-line. The length of these
vectors are called the scale factors :

hi = hi(u) = |∂R/∂ui| (518)

We also consider

ei = ei(u) =
1

hi

∂R

∂ui
(519)
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which are unit tangent vectors to the ui-lines.
Our assumption of invertibility implies that

∂(x, y, z)

∂(u1, u2, u3)
6= 0 (520)

(This is a converse to the inverse function theorem). This is a determinant with columns
∂R/∂ui. It follows that ∂R/∂u1, ∂R/∂u2, ∂R/∂u3 are linearly independent. Hence
e1, e2, e3 are linearly independent and so form a basis for R3. Any vector v in R3 can
be uniquely written in the form

v = v1e1 + v2e2 + v3e3 =
3∑
i=1

viei (521)

The new coordinates are said to be orthogonal if

∂R

∂ui
· ∂R

∂uj
= 0 for i 6= j (522)

It is equivalent to say that

ei · ej =

{
0 i 6= j

1 i = j
(523)

and the ei form an orthonormal basis. Then v · ei = vi and we can write

v =
3∑
i=1

(v · ei)ei (524)

For the rest of this section we assume we have an orthogonal coordinate system.
We give some examples of orthogonal coordinate systems.

1. (cylindrical coordinates) These are defined by

R = r cos θi + r sin θj + zk (525)

We computed ∂R/∂r, ∂R/∂θ, ∂R/∂z, saw that they were orthogonal, and com-
puted er, eθ, ez. The scale factors are

hr =|∂R/∂r| = 1

hθ =|∂R/∂θ| = r

hz = |∂R/∂z| = 1

(526)
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2. (spherical coordinates) These are defined by

R = ρ sinφ cos θi + ρ sinφ sin θj + ρ cosφk (527)

We computed ∂R/∂ρ, ∂R/∂φ, ∂R/∂θ. One can check that they are orthogonal.
Also we computed eρ, eφ, eθ. The scale factors are

hρ =|∂R/∂ρ| = 1

hφ =|∂R/∂φ| = ρ

hθ =|∂R/∂θ| = ρ sinφ

(528)

3. (parbolic coordinates) These are defined by

R = (u1u2 cosu3)i + (u1u2 sinu3)j +
1

2
(u2

1 − u2
2)k (529)

We compute

∂R/∂u1 =u2 cosu3i + u2 sinu3j + u1k

∂R/∂u2 =u1 cosu3i + u1 sinu3j− u2k

∂R/∂u3 =u1u2(− sinu3)i + u1u2(cosu3)j

(530)

These are orthogonal since for example

∂R

∂u1

· ∂R

∂u2

= u1u2 cos2 u3 + u1u2 sin2 u3 − u1u2 = 0 (531)

The other pairs are similar. The scale factors are

h1 =|∂R/∂u1| =
√
u2

1 + u2
2

h2 =|∂R/∂u2| =
√
u2

1 + u2
2

h3 =|∂R/∂u3| = u1u2

(532)

From the above one can compute e1, e2, e3.

Orthogonal coordinate systems are special; there are only a finite number of them.
A vector field v(R) in new coordinates R(u) is

v̂(u) = v(R(u)) (533)

The vector field in new coordinates and new basis ei(u) is

v̂(u) =
3∑
i=1

vi(u)ei(u) vi(u) = v̂(u) · ei(u) (534)
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example: Consider the vector field

v = yi + xj + zk (535)

In cylindrical coordinates this is

v̂ = r sin θi + r cos θj + zk (536)

We want to express it in the cylindrical basis

er = cos θi + sin θj

eθ =− sin θi + cos θj

ez =k

(537)

It will have the form
v̂ = vrer + vθeθ + vzez (538)

where

vr =v̂ · er = 2r cos θ sin θ = r sin(2θ)

vθ =v̂ · eθ = −r sin2 θ + r cos2 θ = r cos(2θ)

vz =v̂ · ez = z

(539)

Thus
v̂ = r sin(2θ)er + r cos(2θ)eθ + zez (540)

Now suppose we are given a scalar function f(R) and a vector field v(R). We
consider the problem of expressing the derivatives ∇f,∇ · v,∇ × v,∆f in a general
orthogonal coordinate system R = R(u) with orthonormal basis ei(u).

We start with the gradient. In new coordinates f̂(u) = f(R(u)) The new gradient
is defined as

( grad f̂)(u) ≡ (∇f)(R(u)) =
3∑
i=1

[(∇f)(R(u)) · ei(u)
]
· ei(u) (541)

But the derivatives are still in Cartesian coordinates. By the chain rule

∂f̂

∂ui
(u) = (∇f)(R(u)) · ∂R

∂ui
= (∇f)(R(u)) · ei(u)hi(u) (542)

Therefore

(∇f)(R(u)) · ei(u) =
1

hi(u)

∂f̂

∂ui
(u) (543)
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Substituting this into the expression for grad f̂ we find that

( grad f̂)(u) =
3∑
i=1

1

hi(u)

∂f̂

∂ui
(u)ei(u) (544)

examples: In cylindrical coordinates

grad f̂ =
1

hr

∂f̂

∂r
er +

1

hθ

∂f̂

∂θ
eθ +

1

hz

∂f̂

∂z
ez

=
∂f̂

∂r
er +

1

r

∂f̂

∂θ
eθ +

∂f̂

∂z
ez

(545)

In spherical coordinates

grad f̂ =
1

hρ

∂f̂

∂ρ
eρ +

1

hφ

∂f̂

∂φ
eφ +

1

hθ

∂f̂

∂θ
eθ

=
∂f̂

∂ρ
eρ +

1

ρ

∂f̂

∂φ
eφ +

1

ρ sinφ

∂f̂

∂θ
eθ

(546)

example . Consider the function

f(R) =
1

|R|
=

1√
x2 + y2 + z2

(547)

We want to find the gradient. It is easiest to change to spherical coordinates by

f̂(ρ, φ, θ) =
1

ρ
(548)

Then since this function does not depend on φ or θ

grad f̂ =
∂f̂

∂ρ
eρ = − 1

ρ2
eρ (549)

(And since ρ = |R| and eρ = R/|R| this is −R/|R|3 back in Cartesian coordinates.)

Next consider the divergence. Recall that a vector field v(R) is expressed in new
coordinates R(u) by v̂(u) = v(R(u)) and that in the new basis it has the form v̂ =∑

i viei with vi = v̂ · ei. The divergence of the vector field is defined by ( div v̂)(u) =
(∇ · v)(R(u)). Then one can show that (after a somewhat lengthy calculation)

div v̂ =
1

h1h2h3

(
∂(h2h3v1)

∂u1

+
∂(h1h3v2)

∂u2

+
∂(h1h2v3)

∂u3

)
(550)
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For example consider spherical coordinates with hρ = 1, hφ = ρ, hθ = ρ sinφ. Then
we have

v̂ = vρeρ + vφeφ + vθeθ (551)

and

div v̂ =
1

ρ2 sinφ

(
∂(ρ2 sinφvρ)

∂ρ
+
∂(ρ sinφvφ)

∂φ
+
∂(ρvθ)

∂θ

)
=

1

ρ2

∂(ρ2vρ)

∂ρ
+

1

ρ sinφ

(∂(sinφvφ)

∂φ
+
∂vθ
∂θ

) (552)

For a general coordinate system the curl is ( curl v̂)(u) = (∇× v)(R(u)). One can
show that

curl v̂ =
1

h1h2h3

det

 h1e1 h2e2 h2e3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1v1 h2v2 h3v3

 (553)

Finally for a scalar if f̂(u) = f(R(u)) and (∆̂f̂)(u) = (∆f)(R(u)) then one can
show

∆̂f̂ =
1

h1h2h3

(
∂

∂u1

(
h2h3

h1

∂f̂

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂f̂

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂f̂

∂u3

))
(554)

For example in spherical coordinates

∆̂f̂ =
1

ρ2 sinφ

(
∂

∂ρ

(
ρ2 sinφ

∂f̂

∂ρ

)
+

∂

∂φ

(
sinφ

∂f̂

∂φ

)
+

∂

∂θ

(
1

sinφ

∂f̂

∂θ

))

=
1

ρ2

∂

∂ρ

(
ρ2∂f̂

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂f̂

∂φ

)
+

1

ρ2 sin2 φ

∂2f̂

∂θ2

(555)

example Find all spherically symmetric solutions of ∆f = 0. Spherically symmet-
ric means that f(R) depends only on |R|. In spherical coordinates it means that
f̂(ρ, φ, θ) = f̂(ρ). Then the equation is

∆̂f̂ =
1

ρ2

∂

∂ρ

(
ρ2∂f̂

∂ρ

)
= 0 (556)

This implies

ρ2∂f̂

∂ρ
= c1 (557)

for some constant c1. Then
∂f̂

∂ρ
=
c1

ρ2
(558)
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which has the general solution

f̂(ρ) =
−c1

ρ
+ c2 (559)

Back in Cartesian coordinates it says that

f(R) =
−c1

|R|
+ c2 (560)
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3 complex variables

3.1 complex numbers

A complex number is a pair of real numbers, hence a vector in R2. It is written

z = (x, y) (561)

Define addition and multiplication by a scalar just as for vectors:

z1 + z2 =(x1 + x2, y1 + y2)

αz =(αx, αy) α ∈ R
(562)

We also define multiplication by

z1z2 = (x1x2 − y1y2, x1y2 + y1x2) (563)

Then, as one can check, the ordinary rules of arithmetic apply:

z1(z2z3) =(z1z2)z3

z1z2 =z2z1

z1(z2 + z3) =z1z2 + z1z3

(564)

Two special complex numbers are

1 = (1, 0) i = (0, 1) (565)

Then any complex z can be written

z = (x, y) = x(1, 0) + y(0, 1) = x1 + yi (566)

Consider complex numbers of the form x1. We have

(x11)(x21) =(x1, 0)(x2, 0) = (x1x2, 0) = x1x21

x11 + x21 =(x1, 0) + (x2, 0) = (x1 + x2, 0) = (x1 + x2)1

(x1)(x′, y′) =(x, 0)(x′, y′) = (xx′, xy′) = x(x′, y′)

(567)

These behave just like the real numbers. Hence we can identify the complex number
x1 = (x, 0) with the real number x

Now consider complex numbers of the from yi. We have

(y1i)(y2i) = (0, y1)(0, y2) = (−y1y2, 0) = −y1y21 = −y1y2 (568)

In particular
(yi)2 = −y2 i2 = −1 (569)

106



These complex numbers have a square which is negative. They are called imaginary
numbers.

A general complex number z = (x, y) = x1 + yi can now written

z = x+ iy (570)

Points in the plane can be labeled in this form . For example the point (3, 2) could be
labeled 3 + 2i. Also in this form the multiplication law need not be remembered since
it follows from the relation i2 = −1. Indeed we have

z1z2 =(x1 + iy1)(x2 + iy2)

=x1x2 + ix1y2 + iy1x2 + i2y1y2

=x1x2 − y1y2 + i(x1y2 + y1x2)

(571)

3.2 definitions and properties

1. (definitions) For a complex number z = x+ iy define

x =Re z = real part of z

y =Im z = imaginary part of z
(572)

We also define
|z| =

√
x2 + y2 (573)

called the ”length of z” or the ”absolute value of z” or the ”modulus of z”, and

arg z = polar angle for z (574)

and
z̄ = x− iy (575)

called the ”complex conjugate” of z. See figure 30 for the associated geometric picture.
The complex conjugate has the properties

z1 + z2 =z̄1 + z̄2

z1z2 =z̄1z̄2

|z̄| =|z|
(576)

2. (inverses) Note that

zz̄ = (x+ iy)(x− iy) = x2 + y2 = |z|2 (577)

If z 6= 0 this can be written
z(z̄/|z|2) = 1 (578)
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Figure 30:

This says that z̄/|z|2 is an inverse for z. We write

z−1 =
z̄

|z|2
or (x+ iy)−1 =

x− iy
x2 + y2

(579)

Then we can divide by any z 6= 0 by defining

w

z
= wz−1 (580)

examples: By the formula i−1 = −i and

(3 + 4i)−1 =
3− 4i

25
=

3

25
− i 4

25
(581)

However one does not have to remember the formula. Instead just multiply in the
numerator and denominator by the complex conjugate. For example

1

3 + 4i
=

1

3 + 4i
· 3− 4i

3− 4i
=

3− 4i

25

3. (distances) Just as for vectors

|z1 − z2| = distance from z1 to z2 (582)
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The triangle inequality holds:

||z1| − |z2|| ≤ |z1 ± z2| ≤ |z1|+ |z2| (582)

4. (exponentials) We want to define

ez = ex+iy = exeiy (582)

We know what ex means and we know that it can be expressed as a convergent series

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + . . . (582)

Suppose we try to define eiy in the same way ignoring questions of convergence. We
would have

eiy =1 + iy +
1

2!
(iy)2 +

1

3!
(iy)3 + . . .

=

(
1− 1

2!
y2 +

1

4!
y4 + . . .

)
+ i

(
y − 1

3!
y3 +

1

5!
y5 + . . .

)
= cos y + i sin y

(582)

We take this as the definition, that is eiy ≡ cos y + i sin y and more generally

ez = ex+iy = ex(cos y + i sin y) (582)

This does obey the law of exponents:

eiy1eiy2 =(cos y1 + i sin y1)(cos y2 + i sin y2)

=(cos y1 cos y2 − sin y1 sin y2) + i(cos y1 sin y2 + sin y1 cos y2)

= cos(y1 + y2) + i sin(y1 + y2)

=ei(y1+y2)

(582)

and in general ez1ez2 = ez1+z2 . Also note

eiy =cos y + i sin y = cos y − i sin y = cos(−y) + i sin(−y) = e−iy

|eiy| = cos2 y + sin2 y = 1

(eiy)−1 =
eiy

|eiy|2
= e−iy

(582)

The last could also be deduced from the law of exponents.

examples:

ei0 = 1 eiπ/2 = i eiπ = −1 ei3π/2 = −i ei2π = 1 (582)

e3+iπ/4 = e3(cosπ/4 + i sinπ/4) = e3

(
1√
2

+ i
1√
2

)
(582)
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3.3 polar form

Points in the plane have polar coordinates (r, θ) related to Cartesian coordinate by
x = r cos θ, y = r sin θ. A complex number can then be written in polar form by

z = x+ iy = r cos θ + ir sin θ = reiθ (582)

Every point z 6= 0 has a unique polar representation z = reiθ with r > 0 and 0 ≤ θ < 2π.
Now we have

|z| = r arg z = θ (582)

If z1 = r1e
iθ1 and z2 = r2e

iθ2 then the product is

z1z2 = r1r2e
i(θ1+θ2) (582)

This says that in complex multiplication we multiply lengths and add angles. Another
way to write it is

|z1z2| =|z1||z2|
arg(z1z2) = arg(z1) + arg(z2)

(582)

The second equation only holds if both sides are in the interval [0, 2π). For example if
z1 = z2 = −i, then arg(z1) + arg(z2) = 3π/2 + 3π/2 = 3π but arg(z1z2) = arg(−1) = π
and the identity fails.

examples

1. To find the polar form of z = 1 + i
√

3 note that the length is 2 and the angle is
tan−1(

√
3) = π/3 hence z = 2eiπ/3.

2. To find the polar form of z = 1 + i note that the length is
√

2 and the angle is
tan−1(1) = π/4. Thus z =

√
2eiπ/4.

3. To find (1 + i)8 write it in polar form and compute

(1 + i)8 = (
√

2eiπ/4)8 = 24e2πi = 16 (582)

problem: Find all complex z such that z3 = 1

solution: Try z = reiθ with r > 0 and 0 ≤ θ < 2π. This is a solution if

r3ei3θ = 1 (582)

Comparing lengths gives r3 = 1 and so r = 1. Then θ must satisfy ei3θ = 1 or
cos(3θ) = 1, sin(3θ) = 0. The solutions are

3θ = 0,±2π,±4π,±6π, . . . (582)
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or
θ = 0,±2π/3,±4π/3,±6π/3, . . . (582)

But the only solutions with 0 ≤ θ < 2π are θ = 0, 2π/3, 4π/3. Thus the answer is

z = ei0, ei2π/3, ei4π/3 = 1, −1

2
+

√
3

2
i, −1

2
−
√

3

2
i (582)

One of the uses of complex numbers is that every polynomial has complex roots. In
the problem we found the solutions of z3 − 1 = 0. Here are some more examples:

examples:

1. The equation zn = a (a real) has n solutions:

z = a1/n, a1/nei(2π/n), a1/nei2(2π/n), . . . , a1/nei(n−1)(2π/n) (582)

2. The equation az2 + bz + c = 0 (a, b, c real) has solutions

z =


−b±
√
b2−4ac

2a
if b2 − 4ac > 0

−b
2a

if b2 − 4ac = 0
−b±i

√
4ac−b2

2a
if b2 − 4ac < 0

(582)

3.4 functions

Let C stand for the set of all complex numbers. Thus C is R2 with a special multipli-
cation. We are interested in functions from C (or a subset) to C written w = f(z) with
both w, z complex. For example w = z2 or w = 1/(3z + 2) or w = |z|.

If w = u+ iv and

f(z) = f(x+ iy) = u(x, y) + iv(x, y) (582)

then the equation w = f(z) can be written as the pair of equations

u = u(x, y) v = v(x, y) (582)

The function u(x, y) is called the real part and the function v(x, y) is called the imagi-
nary part.

examples

1. If w = ez = ex(cos y + i sin y) then

u = ex cos y v = ex sin y (582)
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Figure 31: mapping by the function w = z2

2. If w = 1/z = (x− iy)/(x2 + y2) then

u =
x

x2 + y2
v =

−y
x2 + y2

(582)

To represent a function w = f(z) geometrically we show how it affects straight lines.

example: Consider the function w = z2 which takes the first quadrant to the upper
half plane. We have w = z2 = (x + iy)2 = (x2 − y2) + i2xy so it is equivalent to the
pair of functions

u = x2 − y2 v = 2xy (582)

It maps the line x = c, y > 0 to the line u = c2 − y2, v = 2cy which is the half
parabola

u = c2 − v2

4c2
, v > 0 (582)

It maps the line y = c, x > 0 to the line u = x2− c2, v = 2xc which is the half parabola

u =
v2

4c2
− c2, v > 0 (582)

This is represented in figure 31.
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3.5 special functions

(A.) trigonometric functions
If y is real so eiy = cos y + i sin y and e−iy = cos y − i sin y then

1

2
(eiy + e−iy) = cos y

1

2
(eiy − e−iy) = i sin y (582)

Accordingly we define for complex z

cos z =
1

2
(eiz + e−iz) sin z =

1

2i
(eiz − e−iz) (582)

Other trig functions can be defined from these, for example

tan z =
sin z

cos z
(582)

If z = iα is purely imaginary then

cos(iα) =
1

2
(e−α + eα) = coshα

sin(iα) =
1

2i
(e−α − eα) = i

1

2
(eα − e−α) = i sinhα

(582)

Thus the complex trig functions include both the usual trig functions and the hyperbolic
trig functions as special cases.

(B.) logarithm
We want to define the natural logarithm log z of a complex number z. If z 6= 0 and

such a log has the same properties as the log of positive numbers then we expect

log z = log reiθ = log r + log eiθ = log r + iθ (582)

Accordingly we take as the definition for z 6= 0

log z = log |z|+ i arg z (582)

where 0 ≤ arg z < 2π. However sometimes we may want to make another choice of the
polar angle arg z. For example we could take −π ≤ arg z < π or more generally

c ≤ arg z < c+ 2π (582)

Each choice of c gives a different log functions, called a branch of the logarithm. An
alternative is to take all possible values of arg z. If θ is one possible value then these
would be the infinite sequence

. . . , θ − 2π, θ, θ + 2π, θ + 4π, . . . (582)
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In this case we have a multi-valued function.

example: Take the branch of log z with 0 ≤ arg z < 2π. Then

log i = log |i|+ i arg i = i
π

2
log(−2) = log | − 2|+ i arg(−2) = log 2 + iπ

log(−3i) = log | − 3i|+ i arg(−3i) = log 3 + i
3π

2

log(1 + i) = log |1 + i|+ i arg(1 + i) = log
√

2 + i
π

4

(582)

Is the logarithm the inverse of the exponential? We have the following result

Theorem 23

1. For any branch of the logarithm

elog z = z (582)

2. If log z is defined with c ≤ arg z < c + 2π and if z = x + iy with c ≤ y < c + 2π
then

log(ez) = z (582)

Proof. For the first if z = reiθ, then log z = log r + i(θ + 2πk) for some k. Then

elog z = elog reiθei2πk = reiθ = z (582)

For the second since the restriction on y matches the definition of arg

log(ez) = log(exeiy) = log ex + i arg eiy = x+ iy = z (582)

(C.) complex exponentials
Since z = elog z we can define for complex z, w

zw = ew log z (582)

Here we have to specify the branch of the logarithm we are using. An alternative is to
take all possible values of log z and get a multi-valued function zw.

If w is a positive integer n then

zn (new) = en log z = (elog z)n = zn (old) (582)
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is the same for any branch of the logarithm. But

z1/n = elog z/n (582)

will have n different values depending on the branch of the log. Each value does satisfy
(z1/n)n = elog z = z.

example Since log 1 = i arg 1

11/3 = e
1
3

log 1 = e
i
3

arg 1 =


1 if arg 1 = 0

ei2π/3 if arg 1 = 2π

ei4π/3 if arg 1 = 4π

(582)

We find the solutions of z3 = 1 as z = 11/3 with the different branches for the cube
root.

example Since log i = i arg i

i1/3 = e
1
3

log i = e
i
3

arg i =


eiπ/6 if arg i = π

2

ei5π/6 if arg i = 5π
2

ei9π/6 if arg i = 9π
2

(582)

example Since log i = i arg i
ii = ei log i = e− arg i (582)

This takes infinitely many values

. . . , e3π/2, e−π/2, e−5π/2, e−9π/2, . . . (582)

3.6 derivatives

(A.) First consider functions from R to C written z = f(t) where z is complex and t is
real. For example z = eit or z = t2 + i log t. Such a function can always be written

z = f(t) = x(t) + iy(t) (582)

and x(t) is called the real part of the function and y(t) is called the imaginary part of
the function. The derivative is defined just as for a vector valued function:

dz

dt
= f ′(t) = x′(t) + iy′(t) (582)
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example: If
z = eiat = cos(at) + i sin(at) a real (582)

then
dz

dt
= −a sin(at) + ia cos(at) = ia(cos(at) + i sin(at)) = iaeiat (582)

(B.) Now consider functions from C to C written w = f(z). We start with the definition
of a limit.

definition: limz→z0 f(z) = w0 means for every ε > 0 there is a δ > 0 so if |z − z0| < δ
then |f(z)− w0| < ε.

This says that f(z)→ w0 as z → z0 from any direction.
Now write

z = x+ iy z0 = x0 + iy0

f(z) = u(x, y) + iv(x, y) w0 = u0 + iv0

(582)

Then

|f(z)− w0| =
√

(u(x, y)− u0)2 + (v(x, y)− v0)2

|z − z0| =
√

(x− x0)2 + (y − y0)2
(582)

From this we deduce that limz→z0 f(z) = w0 is the same as

lim
(x,y)→(x0,y0)

u(x, y) = u0

lim
(x,y)→(x0,y0)

v(x, y) = v0

(582)

definition: w = f(z) is continuous at z0 if limz→z0 f(z) = f(z0)

This is the same as the statement that u(x, y) and v(x, y) are continuous at (x0, y0).
One can show that if f, g are continuous at z0 then so are f ± g, f · g, and f/g, the last
provided g(z0) 6= 0. Also if g is continuous at z0 and f is continuous at g(z0) then the
composition f ◦ g is continuous at z0.

definition: w = f(z) is differentiable at z0 if the derivative

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
exists (582)

Varying z0 it is also a function. We also write

dw

dz
= f ′(z) (582)
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Theorem 24 If f is differentiable at z0, then it is continuous at z0

Proof.

lim
z→z0

f(z)− f(z0) = lim
z→z0

(
f(z)− f(z0)

z − z0

)
(z − z0) = f ′(z0) · 0 = 0 (582)

Theorem 25 If f, g are differentiable at z so are f ± g, f · g, f/g (provided g(z) 6= 0)
and

(f ± g)′(z) =f ′(z)± g′(z)

(f · g)′(z) =f ′(z)g(z) + f(z)g′(z)(
f

g

)′
(z) =

g(z)f ′(z)− f(z)g′(z)

g(z)2

(582)

If g is differentiable at z and f is differentiable at g(z) then f ◦ g is differentiable at z
and

(f ◦ g)′(z) = f ′(g(z))g′(z) (582)

These are proved just as for real variables.

examples:

1. If f(z) = c then f ′(z) = 0.

2. If f(z) = z then

f ′(z) = lim
∆z→0

(z + ∆z)− z
∆z

= lim
∆z→0

1 = 1 (582)

3. If f(z) = z2 then by the product rule

f ′(z) =
dz

dz
z + z

dz

dz
= 2z (582)

4. If f(z) = zn then f ′(z) = nzn−1.

5. Any polynomial P (z) is differentiable.

6. Any rational function P (z)/Q(z) is differentiable except at points whereQ(z) = 0.
(where it is not even defined)
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example Let f(z) = z̄. If it exists the derivative is

lim
∆z→0

f(z + ∆z)− f(z)

∆z
= lim

∆z→0

∆z

∆z
(582)

The limit must be the same from any direction. But if ∆z = ∆x is real then

lim
∆z→0

∆z

∆z
= lim

∆x→0

∆x

∆x
= 1 (582)

and ∆z = i∆y is imaginary then

lim
∆z→0

∆z

∆z
= lim

∆y→0

−i∆y
i∆y

= −1 (582)

The limit depends on the direction which means there is no limit in the complex sense.
Thus the derivative does not exist. (Even though there are no kinks or discontinuities
in this function).

3.7 Cauchy-Riemann equations

Let f(z) be differentiable so lim∆z→0(f(z+ ∆z)− f(z))/∆z exists. What does this say
about the real and imaginary parts f(z) = u(x, y) + iv(x, y)? First let ∆z = ∆x be
real. Then

f ′(z) = lim
∆x→0

f(z + ∆x)− f(z)

∆x

= lim
∆x→0

(
u(x+ ∆x, y)− u(x, y)

∆x

)
+ i lim

∆x→0

(
v(x+ ∆x, y)v(x, y)

∆x

)
=
∂u

∂x
+ i

∂v

∂x

(583)

Now let ∆z = i∆y be imaginary. Then

f ′(z) = lim
∆y→0

f(z + i∆y)− f(z)

i∆y

=
1

i
lim

∆y→0

(
u(x, y + ∆y)− u(x, y)

∆y

)
+ lim

∆y→0

(
v(x, y + ∆y)− v(x, y)

∆y

)
=− i∂u

∂y
+
∂v

∂y

(584)

These two expressions must agree since the limit must be the same from any direction.
Thus we must have

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
(585)

These are the Cauchy-Riemann equations or CR equations.
Thus if f(z) is differentiable the the real and imaginary parts satisfy the CR equa-

tions. The converse is also true if we strengthen the hypotheses a bit.
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Theorem 26 If u(x, y), v(x, y) have continuous partial derivatives which satisfy the
CR equations near a point, then f(z) = u(x, y) + iv(x, y) is differentiable at that point
and

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
(586)

examples

1. Let f(z) = z2 so that u = x2 − y2 and v = 2xy. We have

∂u

∂x
= 2x =

∂v

∂y

∂u

∂y
= −2y = −∂v

∂x
(587)

Thus the CR equations hold so f(z) is differentiable (which we already knew)
and

d(z2)

dz
=
∂u

∂x
+ i

∂v

∂x
= 2x+ i2y = 2z (588)

(which we also knew)

2. Let f(z) = ez = ex cos y + iex sin y so u = ex cos y, v = ex sin y. Then

∂u

∂x
= ex cos y =

∂v

∂y

∂u

∂y
= −ex sin y = −∂v

∂x
(589)

Thus the CR equations hold so f(z) is differentiable and

d(ez)

dz
=
∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez (590)

We can use this result and the chain rule to find derivatives of trigonometric
functions

d(cos z)

dz
=

d

dz

[
eiz + e−iz

2

]
=
ieiz − ie−iz

2
= −e

iz − e−iz

2i
= − sin z (591)

Similarly
d(sin z)

dz
= cos z (592)

3. Let f(z) = z̄ = x− iy = u+ iv. Then

∂u

∂x
= 1 6= −1 =

∂v

∂y
(593)

Thus the CR equations fail everywhere and so the function is not differentiable
anywhere (which we already knew).
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4. Let f(z) = log z = log |z| + i arg z. Consider only the right half plane with
−1

2
π < arg z < 1

2
π. Then arg z = tan−1(y/x) so we have

u = log
√
x2 + y2 =

1

2
log(x2 + y2) v = tan−1(y/x)

Then we compute

∂u

∂x
=

x

x2 + y2
=
∂v

∂y

∂u

∂y
=

y

x2 + y2
= −∂v

∂x
(595)

Thus the CR equations hold so f(z) is differentiable and

d(log z)

dz
=
∂u

∂x
+ i

∂v

∂x
=

x− iy
x2 + y2

=
z̄

|z|2
= z−1 (596)

This result actually holds for any branch of the logarithm.

3.8 analyticity

A neighborhood of a point z0 is a disc of some radius ε centered on z0. It is written
{z ∈ C : |z − z0| < ε}. A set D ⊂ C is defined to be open is every point z0 ∈ D has a
neighborhood entirely contained in D. For example the disc {z ∈ C : |z − z0| < r} is
open, but the disc {z ∈ C : |z− z0| ≤ r} is not open since any neighborhood of a point
with |z − z0| = r will have points outside the disc.

A function w = f(z) is analytic on an open set D if it is defined and differentiable
at every point in D. (We restrict to open sets so that if z0 ∈ D then z0 + ∆z ∈ D for
z0 small enough, hence we can form the difference quotient (f(z0 + ∆z) − f(z0))/∆z
and test the differentiability.)

Thus anayticity is essentially the same as differentiability, expect that the latter
refers to points and the former refers to regions. When we take up integration theory it
will be important to identify domains of analyticity for various functions. The following
examples give some practice at this.

examples:

1. A polynomial P (z) is analytic in the entire plane C.

2. The functions ez, cos z, sin z are analytic in plane.

3. The function 1/(z2 + 1) is analytic in the plane with z = ±i deleted. (It is not
defined at the deleted points.)

4. The function 1/(z3 − 1) is analytic in the plane with z = 1, e2πi/3, e4πi/3 deleted.

5. A rational function P (z)/Q(z) is analytic in the plane with the roots of Q(z)
deleted.
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6. Consider log z = log |z|+ i arg z with z 6= 0 and −π < arg z < π. This is analytic
in the cut plane with the negative real axis deleted. We could define it on the
whole plane with only z = 0 deleted if we specified say −π ≤ arg z < π. But then
it would not be analytic because it would be discontinuous across the negative
real axis and hence not differentiable on the negative real axis.

3.9 complex line integrals

(A.) First consider functions f from (a subset of) R to C written z = f(t) = x(t)+iy(t).
We define ∫ b

a

f(t)dt =

∫ b

a

x(t)dt+ i

∫ b

a

y(t)dt (597)

Then we have ∫ b

a

f ′(t)dt =

∫ b

a

x′(t)dt+ i

∫ b

a

y′(t)dt

=[x(t)]ba + i[y(t)]ba

=[f(t)]ba

(598)

example: ∫ 2π

0

eiatdt =

[
eiat

ia

]2π

0

=
e2πia − 1

ia
(599)

(B.) Next consider functions f from (a subset of ) C to C written w = f(z). We could
consider integrals over regions in the plane, but the most interesting case turns out to
be line integrals.

Let C be a directed curve in the plane. Choose a sequence of points z0, z1, . . . , zn
such that z0 is the start point and zn is the finishing point. (see figure 32) Let z∗i be
a point on C between zi and zi+1. Finally let ∆zi = zi+1 − zi and h = maxi |δzi|. We
define the line integral of f over C by∫

C
f(z)dz = lim

h→0

n−1∑
i=0

f(z∗i )∆zi (600)

Note that this involves complex multiplication, so it is different from the line integrals
we have considered previously.

Now suppose that C is parametrized by

z(t) = x(t) + iy(t) a ≤ t ≤ b (601)
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Figure 32:

Take points a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b. Take zi = z(ti) and for any points t∗i in
[ti, ti+1] let z∗i = z(t∗i ). If ∆ti = ti+1 − ti then

∆zi = z(ti+1)− z(ti) ≈ z′(t∗i )∆ti (602)

Hence ∫
C
f(z)dz = lim

h→0

i−1∑
i=0

f(z(t∗i ))z
′(t∗i )∆ti =

∫ b

a

f(z(t))z′(t)dt (603)

This is the basic definition. It can also be written∫
C
f(z)dz =

∫ b

a

f(z(t))
dz

dt
dt (604)

and for short one can just remember dz = (dz/dt)dt. This integral is independent of
the choice of parametrization.

examples

1. We want to find
∫
C zdz where C be the unit circle traversed counterclockwise.

The usual parametrization x = cos t, y = sin t with 0 ≤ t ≤ 2π becomes in the
complex form

z = x+ iy = cos t+ i sin t = eit 0 ≤ t ≤ 2π (605)
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Then
dz = ieitdt (606)

and so ∫
C
zdz =

∫ 2π

0

eitieitdt =

∫ 2π

0

ie2itdt =

[
e2it

2

]2π

0

= 0 (607)

2. With the same curve C∫
C
z̄dz =

∫ 2π

0

e−itieitdt =

∫ 2π

0

idt = 2πi (608)

3. Let C = C1 + C2 where C1 is a straight line from 0 to 1 and C2 is a straight line
from 1 to 1 + i. We evaluate∫

C
z̄dz =

∫
C1
z̄dz +

∫
C2
z̄dz (609)

The line C1 is parametrized by z = t, 0 ≤ t ≤ 1. Hence dz = dt and z̄ = t and∫
C1
z̄dz =

∫ 1

0

tdt =
1

2
(610)

The line C2 is parametrized by z = 1+it, 0 ≤ t ≤ 1. Hence dz = idt and z̄ = 1−it
and ∫

C1
z̄dz =

∫ 1

0

(1− it)idt =

∫ 1

0

(i+ t)dt =

[
it+

t2

2

]1

0

= i+
1

2
(611)

Thus
∫
C z̄dz = 1 + i.

3.10 properties of line integrals

To estimate the size of a line integral we have:

Theorem 27 Suppose a curve C has length L and |f(z)| ≤M for all z on C. Then∣∣∣∣∫
C
f(z)dz

∣∣∣∣ ≤ML (612)

Proof. Approximate the integral by a sum
∑

i f(z∗i )∆zi. By the triangle inequality∣∣∣∣∣∑
i

f(z∗i )∆zi

∣∣∣∣∣ ≤∑
i

|f(z∗i )∆zi|

=
∑
i

|f(z∗i )||∆zi|

≤M
∑
i

|∆zi|

(613)

123



Now take the limit as h = maxi |∆zi| → 0 and get the result.

example: Let C be a semi-circle of radius R in the upper half plane centered on the
origin. Suppose we want to estimate the size of

∫
C(z + 1)3dz. For z on C we have

|(z + 1)3| = |z + 1|3 ≤ (|z|+ 1)3 = (R + 1)3 (614)

The length of C is πR. Hence by the theorem∣∣∣∣∫
C
(z + 1)3dz

∣∣∣∣ ≤ (R + 1)3πR (615)

Next we want to express our complex line integrals in terms of there real and
imaginary parts. Start with the definition∫

C
f(z)dz =

∫ b

a

f(z(t))
dz

dt
dt (616)

where z(t), a ≤ t ≤ b is a parametrization of C. Then insert the expressions

f(z) =u(x, y) + iv(x, y)

z(t) =x(t) + iy(t)
(617)

This gives ∫
C
f(z)dz =

∫ b

a

(
u(x(t), y(t)) + iv(x(t), y(t))

)(dx
dt

+ i
dy

dt

)
dt

=

∫ b

a

(
u(x(t), y(t))

dx

dt
− v(x(t), y(t))

dy

dt

)
dt

+i

∫ b

a

(
u(x(t), y(t))

dy

dt
+ v(x(t), y(t))

dx

dt

)
dt

=
(∫
C
udx− vdy

)
+ i
(∫
C
udy + vdx

)
(618)

For short one can think of making the substitutions f = u+ iv and dz = dx+ idy.
This formula expresses complex line integrals in terms of real line integrals. From

this we can deduce that the complex line integrals have all the properties of real line
integrals. In particular ∫

−C
f(z)dz = −

∫
C
f(z)dz (619)
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3.11 Cauchy’s theorem

Now we can prove:

Theorem 28 (Cauchy’s theorem) If f(z) is analytic everywhere inside a simple closed
curve C then ∫

C
f(z)dz = 0 (620)

Proof. Let R be the region inside C. Then by Green’s theorem followed by the CR
equations: ∫

C
f(z)dz =

(∫
C
udx− vdy

)
+ i
(∫
C
vdx+ udy

)
=

∫
R

(
− ∂v

∂x
− ∂u

∂y

)
dxdy + i

∫
R

(∂u
∂x
− ∂v

∂y

)
dxdy

=0

(621)

examples: Let C be the unit circle traversed counterclockwise. Then we have∫
C
zn dz =0 n = 0, 1, 2, . . .∫
C
ez dz =0∫

C
ez

2+cos(3z) dz =0∫
C

1

z − 2
dz =0

(622)

since in each case the integrand is analytic inside the circle. But for integrals like∫
C
ez̄dz

∫
C

1

z − 1/2
dz

∫
C

log z dz (623)

there is no conclusion since the integrand is not analytic inside the circle

We define a region as a connected open set.

Corollary If f is analytic inside a simply connected region D then
∫
C
f(z)dz = 0 for

any closed curve in D.

Proof. Suppose C is a simple closed curve. Since D is simply connected the interior of
C is in D, hence f is analytic inside C and the result follows by Cauchy’s theorem. If
C is not simple break it up into pieces which are simple.
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Figure 33:

Corollary If f is analytic inside a simply connected region D then integrals
∫
C
f(z)dz

are independent of path in D.

Proof. If C1 and C2 are paths in D with the same endpoints then C1 − C2 is a closed
curve in D and so

∫
C1 f −

∫
C2 f =

∫
C1−C2 f = 0 by the previous Corollary.

Corollary (deformation theorem) Let f be analytic in a region D and let C1, C2 be
simple closed curves in D such that C1 can be continuously deformed to C2 in D. Then∫

C1
f =

∫
C2
f (624)

Proof. We prove the result in the case where C1, C2 are simple closed curves and C1 is
inside C2. The hypotheses of the theorem imply that f is analytic in the region between
them.

Let C be a curve which traverses C1, then jumps to C2 along a path γ, then traverses
−C2, then jumps back to C1 along −γ. (see figure 33) Then C is a closed curve and f
is analytic inside it and so by Cauchy’s theorem∫

C1
f −

∫
C2
f =

∫
C1
f +

∫
γ

f +

∫
−C2

+

∫
−γ
f =

∫
C
f = 0 (625)
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3.12 Cauchy integral formula

We need formulas for the direct evaluation of complex line integrals, i.e. without making
a parametrization. The first is a generalization of the fundamental theorem of caculus.

Theorem 29 Let f be analytic in a region D. Then
∫
C f
′(z)dz is independent of path

in D and so can be written
∫ z1
z0
f ′(z)dz. We have∫ z1

z0

f ′(z)dz = f(z1)− f(z0) (626)

Proof. Given points z0, z1 in D let C be any path from z0 to z1 and let z(t), a ≤ t ≤ b
be any parametrization of C with z(a) = z0 and z(b) = z1. Then by the chain rule∫

C
f ′(z)dz =

∫ b

a

f ′(z(t))z′(t)dt

=

∫ b

a

d

dt

[
f(z(t)

]
dt

=f(z(b))− f(z(a))

=z1 − z0

(627)

example: ∫ 1+i

0

z3dz =

[
z4

4

]1+i

0

=
(1 + i)4

4
=

(
√

2eiπ/4)4

4
= eiπ = −1 (628)

To use the theorem one still has to find an anti-derivative for the integrand. For
closed curves there is another formula which evaluates integrals with no work at all.

Theorem 30 (Cauchy Integral Formula) Let f(z) be analytic inside a simple closed
curve C traversed counterclockwise. Let z0 be a point inside C. Then∫

C

f(z)

z − z0

= 2πif(z0) (629)

Note that if z0 is outside C then f(z)/(z−z0) is analytic inside C and so the integral
is zero by Cauchy’s theorem.
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Figure 34:

Proof. Let C ′ be a little circle of radius r centered on z0. (see figure 34) Since f is
analytic between C and C ′ we have by the deformation theorem∫

C

f(z)

z − z0

dz =

∫
C′

f(z)

z − z0

dz (630)

Now parametrize C ′ by

z =z0 + reiθ 0 ≤ θ ≤ 2π

dz =ireiθdθ
(631)

Then ∫
C′

f(z)

z − z0

dz =

∫ 2π

0

f(z0 + reiθ)ireiθ

reiθ
dθ = i

∫ 2π

0

f(z0 + reiθ) dθ (632)

This is true for any small r > 0. Thus it is also true in the limit r → 0 which gives

i

∫ 2π

0

f(z0) dθ = 2πif(z0) (633)
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examples: Let C be the circle |z| = 2 traversed counterclockwise. Then∫
C

ez

z − 1
dz = 2πi[ez]z=1 = 2πie∫

C

ez

z − 3
dz = 0∫

C

4z2 + 7

z − 1
dz = 2πi[4z2 + 7]z=1 = 22πi

(634)

example: Let C be the square with corners i,−i, 2 − i, 2 + i traversed in that order.
We want to evaluate ∫

C

ez

z2 − 1
dz =

∫
C

ez

(z + 1)(z − 1)
dz (635)

The integrand goes bad at both z = ±1 but only z = 1 is inside C. Thus ez/(z + 1) is
analytic inside the curve and we can evaluate the integral as∫

C

ez/(z + 1)

z − 1
dz = 2πi[ez/(z + 1)]z=1 = πie (636)

example: Let C be the circle |z| = 2 traversed counterclockwise. We want to evaluate∫
C

ez

z2 + 1
dz =

∫
C

ez

(z + i)(z − i)
dz (637)

The integrand goes bad at z = ±i and this time both points are inside C. Thus we
cannot use the Cauchy integral formula as it stands. We give two methods to modify
the problem so that we can use it.

Solution (1). Break the denominator up using partial fractions We look for A,B such
that

1

(z + i)(z − i)
=

A

z − i
+

B

z + i
(638)

for all z. This is the same as

1 = A(z + i) +B(z − i) (639)

Matching coefficients gives A+B = 0 and Ai−Bi = 1. The solution is A = 1/2i and
B = −1/2i. Therefore

1

(z + i)(z − i)
=

1

2i

( 1

z − i
− 1

z + i

)
(640)

Inserting this into the integral it becomes

1

2i

∫
C

ez

z − i
dz − 1

2i

∫
C

ez

z + i
dz = 2πi

(
ei − e−i

2i

)
= 2πi sin(1) (641)
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Figure 35:

Solution (2). Deform the curve to a pair of little circles C1 around z = i and C2 around
z = −i. (see figure 35.) Then the integral is∫

C1

ez

(z + i)(z − i)
dz +

∫
C2

ez

(z + i)(z − i)
dz

=2πi

[
ez

z + i

]
z=i

+ 2πi

[
ez

z − i

]
z=−i

=2πi

(
ei − e−i

2i

)
= 2πi sin(1)

(642)
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3.13 higher derivatives

Let f be analytic in a region D, let z be a point in D, and let C be a simple closed
curve enclosing z such that the interior is contained in D, for example C could be a
little circle around z. By the Cauchy integral formula

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ (643)

The integrand here is a differentiable function of z since

d

dz

[
1

ζ − z

]
=

1

(ζ − z)2
(644)

One can differentiate under the integral sign obtain

f ′(z) =
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ (645)

Repeat the argument and conclude that f ′(z) is differentiable and that

f ′′(z) =
2

2πi

∫
C

f(ζ)

(ζ − z)3
dζ (646)

Repeat the argument and conclude that f ′′(z) is differentiable and that

f ′′′(z) =
3 · 2
2πi

∫
C

f(ζ)

(ζ − z)4
dζ (647)

In fact f can be differentiated any number of times and

f (n)(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ (648)

This is a remarkable result: assuming only f is analytic, i.e. once differentiable, we
conclude that it is infinitely differentiable. This can certainly fail for functions of a real
variable.

The last formula can also be used to evaluate integrals. We replace z by z0 and ζ
by z and state it as follows.

Theorem 31 Let f be analytic inside a simple closed curve C traversed counterclock-
wise. Let z0 be a point inside C. Then for n = 0, 1, 2, . . .∫

C

f(z)

(z − z0)n+1
dz =

2πi

n!
f (n)(z0) (649)
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Notation: If C is a circle of radius r centered on z0 traversed counterclockwise then∫
C
f(z)dz can be written

∮
|z−z0|=r

f(z)dz (650)

examples ∮
|z|=2

e6z

z − 1
dz =2πi

[
e6z
]
z=1

= 2πie6

∮
|z|=2

e6z

(z − 1)2
dz =

2πi

1!

[
d

dz
e6z

]
z=1

= 12πie6

∮
|z|=2

e6z

(z − 1)3
dz =

2πi

2!

[
d2

dz2
e6z

]
z=1

= 36πie6

(651)

example∮
|z|=1

sin(sin z)

z2
dz = 2πi

[
d

dz
sin(sin z)

]
z=0

= 2πi [cos(sin z) cos z]z=0 = 2πi (652)

3.14 Cauchy inequalities

Let C be a circle of radius R around a point a. Suppose that f(z) is analytic inside the
circle and that on the circle we have the bound

|f(z)| ≤M z ∈ C (653)

The Cauchy integral formula says that

f(a) =
1

2πi

∫
C

f(z)

z − a
dz (654)

We use this to estimate |f(a)|. For z on C we have∣∣∣∣ f(z)

z − a

∣∣∣∣ =
|f(z)|
|z − a|

=
|f(z)|
R
≤ M

R
(655)

Then length of the curve is 2πR. Thus

|f(a)| ≤ 1

2π

M

R
2πR = M (656)

We could take M to be the maximum of |f(z)| on the circle and then this says that |f |
at the center of a circle is less than or equal to the maximum of |f | on the circle.
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More generally we have

f (n)(a) =
n!

2πi

∫
C

f(z)

(z − a)n+1
dz (657)

Now z on C we have ∣∣∣∣ f(z)

(z − a)n+1

∣∣∣∣ ≤ M

Rn+1
(658)

and so

|f (n)(a)| ≤ n!

2π

M

Rn+1
2πR =

n!M

Rn
(659)

We restate the result as a theorem.

Theorem 32 (Cauchy inequalities.) Let f be analytic inside a circle of radius R cen-
tered on a and suppose |f | ≤M on the circle. Then for n = 0, 1, 2, . . .

|f (n)(a)| ≤ n!M

Rn
(660)

This has some interesting consequences.

Theorem 33 (Liouville’s theorem) Suppose f is analytic in the entire plane and f is
bounded, that is |f(z)| ≤M for some M and all z. Then f is constant.

Proof. f is analytic inside any circle of radius R centered on any a, and is bounded
by M on the circle. By the n = 1 Cauchy inequality

|f ′(a)| ≤ M

R
for all a,R (661)

Taking the limit R→∞ gives

|f ′(a)| ≤ 0 for all a (662)

Hence f ′(a) = 0 for all a and so f is a constant.

Theorem 34 (Fundamental theorem of algebra) Every polynomial P (z) of degree n ≥ 1
has n roots (not necessarily distinct)

Proof. Suppose it is not true and P (z) 6= 0 for all z. Then 1/P (z) is analytic
everywhere. Furthermore if P (z) = anz

n + · · ·+ a1z + a0 with an 6= 0 then

lim
z→∞

1

P (z)
= lim

z→∞

1

anzn + · · ·+ a1z + a0

= lim
z→∞

z−n

an + an−1z−1 · · ·+ a1z−n+1 + a0z−n

=
0

an
= 0

(663)
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From this and the fact that 1/P (z) is continuous one can deduce that it is bounded
Then by Liouville’s theorem 1/P (z) is constant and hence P (z) is constant. This is a
contradiction. Thus we must have P (z) = 0 for some z. The polynomial has at least
one root.

If we call the root a1 then P (z) must have z − a1 as a factor so

P (z) = (z − a1)P1(z) (664)

where P1(z) is a polynomial of degree n− 1. Repeating the argument P1 must have a
root a2 and hence a factor z − a2. Then

P (z) = (z − a1)(z − a2)P2(z) (665)

where P2(z) has degree n − 2. After n steps we are left with n factors z − ai and a
polynomial of degree 0 which is a constant c

P (z) = (z − a1)(z − a2) · · · (z − an)c (666)

This exhibits the n roots.

3.15 real integrals

The Cauchy integral formula is so easy to use that it is worthwhile going to a lot of
trouble to mold other integrals into this form. In particular this can be done for certain
real integrals.

Consider first integrals of the form
∮
|z|=1

f(z)dz. Parametrizing the unit circle by

z = eiθ, 0 ≤ θ ≤ 2π and dz = ieiθdθ we have∮
|z|=1

f(z)dz =

∫ 2π

0

f(eiθ)ieiθdθ (667)

Now we reverse this process. Suppose we an integral of the form
∫ 2π

0
F (cos θ, sin θ)dθ

for some real function F . (Such integrals come up for example when computing Fourier
series.) Then we can write it a complex integral over the unit circle by∫ 2π

0

F (cos θ, sin θ)dθ

=

∫ 2π

0

F
(eiθ + e−iθ

2
,
eiθ − e−iθ

2i

)ieiθdθ
ieiθ

=

∫
|z|=1

F
(z + z−1

2
,
z − z−1

2i

)dz
iz

(668)

Thus the method is to make the substitutions

cos θ =
z + z−1

2
sin θ =

z − z−1

2i
dθ =

dz

iz
(669)
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and replace the integral over [0, 2π] by an integral over |z| = 1.
In evaluating integrals over the unit circle it is sometimes useful to keep in mind

that for any integer n ∮
|z|=1

zndz =


0 n ≥ 0

2πi n = −1

0 n ≤ −2

(670)

This follows by Cauchy’s theorem for n > 0 and by the Cauchy integral formula in the
other cases.

example ∫ 2π

0

sin4 θ dθ =

∮
|z|=1

(z − z−1

2i

)4dz

iz

=
1

16

∮
|z|=1

(z4 − 4z2 + 6− 4z−2 + z−4)
dz

iz

=
1

16i

∮
|z|=1

(z3 − 4z + 6z−1 − 4z−3 + z−5) dz

=
1

16i
· 6 · 2πi =

3

4
π

(671)

example ∫ 2π

0

dθ

2 + cos θ
=

∮
|z|=1

1(
2 + z+z−1

2

) dz
iz

=
1

i

∮
|z|=1

2 dz

z2 + 4z + 1

(672)

The denominator vanishes when z2 + 4z + 1 = 0 which occurs at

z =
−4±

√
16− 4

2
= −2±

√
3 (673)

Hence the polynomial factors as

z2 + 4z + 1 = (z + 2 +
√

3)(z + 2−
√

3) (674)

Put this into the integral and note that the only part not analytic inside the circle is
the factor (z + 2−

√
3)−1. Thus the integral can be evaluated as

1

i

∮
|z|=1

2 dz

(z + 2 +
√

3)(z + 2−
√

3)
=

1

i
· 2πi

[ 2

z + 2 +
√

3

]
z=−2+

√
3

=
2π√

3
(675)
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There is another class of real integrals which can be treated by complex variable
techniques. These are integrals over the entire real line. We illustrate with an example.

example: Suppose we want to find the integral
∫∞
−∞(1 + x2)−1dx. We can proceed as

follows ∫ ∞
−∞

dx

1 + x2
= lim

R→∞

∫ R

−R

dx

1 + x2

= lim
R→∞

∫
LR

dz

1 + z2

= lim
R→∞

(∫
LR+CR

dz

1 + z2
−
∫
CR

dz

1 + z2

) (676)

Here we treat the real integral as a complex integral over the line LR from −R to
R, then we turn it into a closed curve by adding a semi-circle CR of radius R in the
upper half plane. (see figure 36) Of course we also have to substract the contribution
of the semi-circle. Now the idea is to evaluate the integral over LR +CR by the Cauchy
integral formula and show that the integral over CR goes to zero as R→∞.

We have for any R > 1∫
LR+CR

dz

1 + z2
=

∫
LR+CR

dz

(z + i)(z − i)
= 2πi

[
1

z + i

]
z=i

= π (677)

Note that only z = i is inside the curve, not z = −i. The result is independent of R
and so the limit as R→∞ is also π.

For the other term note that if z is on CR then |z2 + 1| ≥ ||z|2 − 1| = R2 − 1 and
therefore

1

|1 + z2|
≤ 1

R2 − 1
(678)

Then since CR has length πR we have

0 ≤
∣∣∣∣∫
CR

dz

1 + z2

∣∣∣∣ ≤ πR

R2 − 1
(679)

But πR/(R2 − 1) goes to zero at R→∞. Therefore

lim
R→∞

∫
CR

dz

1 + z2
= 0 (680)

Thus the answer is ∫ ∞
−∞

dx

1 + x2
= π (681)
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Figure 36:

3.16 Fourier and Laplace transforms

(A.) If f(x) is a function defined for −∞ < x < ∞, the Fourier transform of f is a
new function f̃ defined by

f̃(k) =

∫ ∞
−∞

eikxf(x) dx (682)

The function can be recovered from its Fourier transform by the inversion formula

f(x) =
1

2π

∫ ∞
−∞

e−ikxf̃(k) dk (683)

Fourier transforms are useful for solving partial differential equations on the whole line,
among other things. Complex integration techniques are useful for computing Fourier
transforms.
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example: Suppose we want to find the Fourier transform of the function (1 + x2)−1.
We proceed as in the last example∫ ∞

−∞

eikx

1 + x2
dx = lim

R→∞

∫ R

−R

eikx

1 + x2
dx

= lim
R→∞

∫
LR

eikz

1 + z2
dz

= lim
R→∞

(∫
LR+CR

eikz

1 + z2
dz −

∫
CR

eikz

1 + z2
dz

) (684)

Suppose that k > 0. Then for z = x + iy on the semi-circle CR we have y > 0 and so
|eikz| = |eikx||e−ky| = e−ky ≤ 1. From before |1 + z2| ≥ R2 − 1 and so on CR∣∣∣∣ eikz1 + z2

∣∣∣∣ ≤ 1

R2 − 1
(685)

Then ∣∣∣∣∫
CR

eikz

1 + z2
dz

∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R→∞ (686)

There is no contribution from the integral over CR.
On the other hand by the Cauchy integral formula since z = i is inside the curve

and z = −i is not∫
LR+CR

eikz

1 + z2
dz =

∫
LR+CR

eikz

(z + i)(z − i)
dz = 2πi

[
eikz

z + i

]
z=i

= πe−k (687)

This holds for any R > 1 and hence also in the limit R→∞ and so∫ ∞
−∞

eikx

1 + x2
dx = πe−k k > 0 (688)

This analysis fails if k < 0 since then |eikz| = e−ky grows exponentially in y and we
cannot argue that the contribution from CR vanishes. Instead we close the curve with
a semi-circle C ′R in the lower half plane. We have∫ ∞

−∞

eikx

1 + x2
dx = lim

R→∞

(∫
LR+C′R

eikz

1 + z2
dz −

∫
C′R

eikz

1 + z2
dz

)
(689)

For z = x+ iy on C ′R we have y < 0 and so |eikz| = e−ky < 1 for k < 0. Then again∣∣∣∣∣
∫
C′R

eikz

1 + z2
dz

∣∣∣∣∣ ≤ πR

R2 − 1
→ 0 as R→∞ (690)

and there is no contribution from C ′R.
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For the other term it is now the point z = −i which is inside the closed curve
LR +C ′R. We are going around the curve clockwise so when we use the Cauchy integral
formula there is an overall minus sign. We have∫

LR+C′R

eikz

1 + z2
dz =

∫
LR+C′R

eikz

(z + i)(z − i)
dz = −2πi

[
eikz

z − i

]
z=−i

= πek (691)

Therefore ∫ ∞
−∞

eikx

1 + x2
dx = πek k < 0 (692)

The results for the three cases k > 0, k = 0, k < 0 can be summarized by∫ ∞
−∞

eikx

1 + x2
dx = πe−|k| (693)

(B.) If f(t) is a function defined for 0 ≤ t < ∞ the Laplace transform of f is a new
function defined by

F (s) =

∫ ∞
0

e−stf(t)dt (694)

if the integral converges. The Laplace transform is useful for solving linear ordinary
differential equations.

Suppose there are constants K, c such that

|f(t)| ≤ Kect (695)

then
|e−stf(t)| ≤ Ke−(s−c)t (696)

This is rapidly decreasing if s > c, in which case the integral converges. Thus F (s) is
defined for s > c.

We could also let s be complex. Then |e−st| = e−(Re s)t and

|e−stf(t)| ≤ Ke−((Re s)−c)t (697)

Then the integral converges and the Laplace transform is defined in the half plane
Re s > c. Furthermore on can show that it is analytic in this region (think of differen-
tiating under the integral sign).

There is also an inversion formula for the Laplace transform. If f(s) is analytic for
Re (s) > c and γ > c, then for t > 0

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
estF (s) ds (698)

139



Figure 37:

Here the integral is over the verticle line Re (s) = γ. Such lines can be deformed to
each other in the region of analyticity, so it does not matter what γ we take.

problem: Find the function whose Laplace tranform is (s− 2)−3

solution: The function is analytic for Re(s) > 2 so the function is is given by the
inversion formula with γ > 2. We evaluate it by closing the curve in the left half plane:

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

est

(s− 2)3
ds

= lim
R→∞

1

2πi

∫ γ+iR

γ−iR

est

(s− 2)3
ds

= lim
R→∞

1

2πi

∫
LR

est

(s− 2)3
ds

= lim
R→∞

(
1

2πi

∫
LR+CR

est

(s− 2)3
ds− 1

2πi

∫
CR

est

(s− 2)3
ds

)
(699)

Here LR is the strait line from γ − iR to γ + iR and CR is the semi-circle of radius R
centered on γ, see figure 37.
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Now for s on CR we have Re(s) ≤ γ and so |est| = eRe(s)t ≤ eγt. Also the point on
CR closest to 2 is γ −R and so |s− 2| ≥ |2− (γ −R)|. Therefore∣∣∣∣ 1

2πi

∫
CR

est

(s− 2)3
ds

∣∣∣∣ ≤ 1

2π

eγt

|2− (γ −R)|3
· πR→ 0 as R→∞ (700)

The integral over CR does not contribute.
If R is large enough, then the point 2 is inside LR + CR and so by the higher

derivative Cauchy integral formula

1

2πi

∫
LR+CR

est

(s− 2)3
ds =

1

2!

d2

ds2
[est]s=2 =

1

2
t2e2t (701)

This also holds in the limit R→∞ and so this answer is f(t) = 1
2
t2e2t.
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