CURVATURE AND RADIUS OF **CURVATURE**

5.1 Introduction:

Curvature is a numerical measure of bending of the curve. At a particular point on the curve , a tangent can be drawn. Let this line makes an angle Ψ with positive x- axis. Then curvature is defined as the magnitude of rate of change of Ψ with respect to the arc length s.

 \therefore Curvature at P = $\frac{d\Psi}{dx}$ \boldsymbol{d}

It is obvious that smaller circle bends more sharply than larger circle and thus smaller circle has a larger curvature.

Radius of curvature is the reciprocal of curvature and it is denoted by ρ. **5.2**

• Radius of curvature of Cartesian curve: $y = f(x)$

$$
\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|} = \frac{\left(1 + y_1^2\right)^{3/2}}{|y_2|}
$$
 (When tangent is parallel to x – axis)

$$
\rho = \frac{\left[1 + \left(\frac{dx}{dy}\right)^2\right]^{3/2}}{\left|\frac{d^2x}{dy^2}\right|}
$$
 (When tangent is parallel to y – axis)

Radius of curvature of parametric curve:

$$
\mathbf{x} = \mathbf{f}(\mathbf{t}), \mathbf{y} = \mathbf{g}(\mathbf{t})
$$

\n
$$
\rho = \frac{(x'^2 + y'^2)^{3/2}}{|x'y'' - y'x''|}, \text{ where } x' = \frac{dx}{dt} \text{ and } y' = \frac{dx}{dt}
$$

Example 1 Find the radius of curvature at any pt of the cycloid

$$
x = a (\theta + \sin \theta), y = a (1 - \cos \theta)
$$

Solution: $x' = \frac{dx}{d\theta} = a (1 + \cos \theta)$ and $y' = \frac{dy}{d\theta} = a \sin \theta$

$$
x'' = \frac{d^2x}{d\theta^2} = -a \sin \theta \quad \text{and} \quad y'' = \frac{d^2y}{d\theta^2} = a \cos \theta
$$

\nNow $\rho = \frac{(x'^2 + y'^2)^{3/2}}{|x'y'' - y'x''|} = \frac{\{a^2(1 + \cos \theta)^2 + a^2 \sin^2 \theta\}^{3/2}}{a^2(1 + \cos \theta) \cos \theta + a^2 \sin^2 \theta}$
\n
$$
= \frac{a(1 + \cos^2 \theta + 2\cos \theta + \sin^2 \theta)^{3/2}}{\cos \theta + \cos^2 \theta + \sin^2 \theta}
$$

\n
$$
= \frac{a(2 + 2\cos \theta)^{3/2}}{1 + \cos \theta}
$$

\n
$$
= 2\sqrt{2} a \sqrt{1 + \cos \theta}
$$

\n
$$
= 2\sqrt{2} a \sqrt{2} \frac{\cos^2 \theta}{2} = 4a \cos \frac{\theta}{2}
$$

Example 2 Show that the radius of curvature at any point of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ ($x = a \cos^3 \theta, y = a \sin^3 \theta$) is equal to three times the lenth of the perpendicular from the origin to the tangent.

Solution :
$$
\frac{dx}{d\theta}
$$
 = - 3a cos² θ sinθ = x'
\n $\frac{dy}{d\theta}$ = - 3a sin² θ cosθ = y'
\n $x'' = \frac{d^2x}{d\theta^2} = \frac{d}{d\theta} (-3a cos^2 \theta sin \theta)$
\n= - 3a [-2 cos θ sin² θ + cos³ θ]
\n= 6 a cos θ sin² θ - 3a cos³ θ
\n $y'' = \frac{d^2y}{d\theta^2} = \frac{d}{d\theta} (3a sin^2 \theta cos \theta)$
\n= 3a (2 sin θ cos² θ - sin³ θ)
\n= 6a sin θ cos² θ - 3a sin³ θ
\nNow $\rho = \frac{(x'^2 + y'^2)^{3/2}}{|x'y'' - y'x''|}$

 $=\frac{(9a^2cos^4\theta sin^2\theta+9a^2sin^4\theta cos^2\theta)^3}{(9a^2cos^4\theta sin^2\theta+9a^2sin^4\theta cos^2\theta)^3}$ I

$$
= \frac{\left[9a^2\cos^2\sin^2\theta\left(\cos^2\theta + \sin^2\theta\right)\right]^{\frac{3}{2}}}{\left[-18a^2\sin^2\theta\cos^4\theta + 9a^2\cos^2\theta\sin^4\theta - 18a^2\sin^4\theta\cos^2\theta + 9a^2\sin^2\theta\cos^4\theta\right]}
$$

$$
= \frac{9^{3/2}(a\cos\theta\sin\theta)^3}{\left[-9a^2\sin^2\theta\cos^4\theta - 9a^2\cos^2\theta\sin^4\theta\right]}
$$

$$
= \frac{(9)^{3/2}(a\cos\theta\sin\theta)^3}{9a^2\cos^2\theta\sin^2\theta\left(\cos^2\theta + \sin^2\theta\right)}
$$

$$
\Rightarrow \rho = 3a\sin\theta\cos\theta \qquad(1)
$$

The equation of the tangent at any point on the curve is

$$
y - a \sin^3 \theta = -\tan \theta (x - a \cos^3 \theta)
$$

\n
$$
\Rightarrow x \sin \theta + y \cos \theta - a \sin \theta \cos \theta = 0
$$
(2)

 \therefore The length of the perpendicular from the origin to the tangent (2) is

$$
p = \frac{|0 \sin \theta + 0 \cdot \cos \theta - a \sin \theta \cos \theta|}{\sqrt{\sin^2 \theta + \cos^2 \theta}}
$$

= $a \sin \theta \cos \theta$ (3)

Hence from (1) & (3), $\rho = 3p$

Example 3 If $\rho \& \rho'$ are the radii of curvature at the extremities of two conjugate diameters of the ellipse $\frac{x^2}{x^2}$ α y^2 b^2 prove that $^{2/3}$ + $\rho^{^{2/3}}$) $(ab)^{2/3} = a^2 + b^2$

Solution: Parametric equation of the ellipse is $x = a \cos \theta$, $y=b \sin \theta$

 $\acute{} = -a \sin \theta, \quad y = b \cos \theta$

 $\vert \bar{z} - a \cos \theta, \quad y \vert \vert = -b \sin \theta$ The radius of curvature at any point of the ellipse is given by

$$
\rho = \frac{(x^{'2} + y^{'2})^{3/2}}{|x'y'' - y'x''|} = \frac{(a^2 \sin^2 \theta + b^2 \cos^2 b)^{3/2}}{|(-a \sin \theta) (-b \sin \theta) - (b \cos \theta) (-a \cos \theta)|}
$$

$$
=\frac{(a^2\sin^2\theta+b^2\cos^2\theta)^{3/2}}{ab}\qquad\qquad\ldots\ldots(1)
$$

For the radius of curvature at the extremity of other conjugate diameter is obtained by replacing θ by $\theta + \frac{\pi}{2}$ $\frac{\pi}{2}$ in (1). Let it be denoted by ρ' . Then

$$
\therefore \rho' = \frac{(a^2 \sin^2 \theta + b^2 \sin^2 \theta)^{3/2}}{ab}
$$

$$
\therefore \rho^{2/3} + {\rho'}^{2/3} = \frac{a^2 \sin^2 \theta + b^2 \cos^2 \theta}{(ab)^{2/3}} + \frac{a^2 \cos^2 \theta + b^2 \cos^2 \theta}{(ab)^{2/3}}
$$

$$
= \frac{a^2 + b^2}{(ab)^{2/3}}
$$

$$
\Rightarrow (ab)^{2/3} ({\rho'}^{2/3} + {\rho'}^{2/3}) = a^2 + b^2
$$

Example 4 Find the points on the parabola $y^2 = 8x$ at which the radius of curvature is $\frac{125}{16}$. **Solution**: $y = 2\sqrt{2} \sqrt{x}$

$$
y_1 = \frac{\sqrt{2}}{\sqrt{x}}
$$
, $y_2 = \frac{-1}{\sqrt{2}x^{3/2}}$
\n
$$
\rho = \frac{(1+y_1^2)^{3/2}}{|y_2|} = (1 + \frac{2}{x})^{3/2} \cdot \sqrt{2} x^{3/2} = \sqrt{2} (x + 2)^{3/2}
$$

\nGiven $\rho = \frac{12.5}{16}$ $\therefore (x + 2)^{3/2} = \frac{125}{16\sqrt{2}} = (\frac{5}{2\sqrt{2}})^3$
\n $\therefore (x + 2)^{3/2} = \frac{5}{2\sqrt{2}}$
\n $\Rightarrow x + 2 = \frac{25}{8}$ $\Rightarrow x = \frac{9}{8}$
\n $\Rightarrow y^2 = 8(\frac{9}{8})$ i.e. $y = 3, -3$
\nHence the points at which the radius of curvature is $\frac{125}{16}$ are $(9, \pm 3)$.

Example 5 Find the radius of curvature at any point of the curve

$$
y = C \cos h \left(x/c \right)
$$

Solution: $y_1 = \frac{c}{a}$ $\frac{c}{c}$ Sin h $\frac{x}{c}$ $\frac{x}{c}$ = Sin h $\left(\frac{x}{c}\right)$ $\frac{1}{c}$ $\mathbf{1}$ $\frac{1}{c}$ cos h $\frac{x}{c}$ $\mathcal{C}_{0}^{(n)}$ Now, $\rho = \frac{(1+y_1^2)^3}{\sigma}$ \mathcal{Y} $=\frac{\left(1+Sin\ h^2\left(\frac{x}{c}\right)\right)}{1+\left(\frac{x}{c}\right)}$ $\frac{1}{c}$ 3 $\overline{1}$ $\frac{1}{c}$ cos h $\frac{x}{c}$ $\mathcal{C}_{0}^{(n)}$ $=$ C cos h² $\left(\frac{x}{2}\right)$ $\frac{1}{c}$ \Rightarrow $\rho = \frac{1}{2}$ $\frac{1}{c}y^2$ **Example 6** For the curve $y = \frac{dx}{a+x}$, prove that

$$
\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{y}{x}\right)^2 + \left(\frac{x}{y}\right)^2
$$

where ρ is the radius of curvature of the curve at its point (x, y) **Solution:** Here α α

$$
\Rightarrow y_1 = \frac{(a+x)a - ax(1)}{(a+x)^2}
$$

$$
= \frac{a^2}{(a+x)^2}
$$

$$
\therefore y_2 = \frac{-2a^2}{(a+x)^3}
$$

Now, $\rho = \frac{(1+y^2)^3}{\sigma}$

Now,
$$
\rho = \frac{(-1.5)^{3}}{y_{2}}
$$

= $[1 + \frac{a^{4}}{(a+x)^{4}}]^{3/2}$

 $\times \frac{(a+x)^3}{(a-x)}$ –

$$
\therefore \rho^{2/3} = \left[1 + \frac{a^4}{(a+x)^4}\right] \frac{(a+x)^2}{\left(-2\right)^{2/3} a^{4/3}}
$$

$$
\left(\frac{2\rho}{a}\right)^{2/3} = \left[1 + \frac{a^4}{(a+x)^4}\right] \frac{(a+x)^2}{2^{2/3} a^{4/3}} \times \frac{2^{2/3}}{a^{2/3}}
$$

$$
= \frac{1}{a^2} \left[1 + \frac{a^4}{(a+1)^4}\right] (a+x)^2
$$

$$
= \frac{1}{a^2} \left[(a+x)^2 + \frac{a^4}{(a+x)^2} \right]
$$

$$
= \left(\frac{a+x}{a}\right)^2 + \left(\frac{a}{a+x}\right)^2
$$

$$
= \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2
$$

Example 7 Find the curvature of $x = 4 \cos t$, $y = 3 \sin t$. At what point on this ellipse does the curvature have the greatest & the least values? What are the magnitudes?

Solution:
$$
\rho = \frac{(x'^2 + y'^2)^{3/2}}{|x'y'' - y'x''|}
$$

\nNow, $x' = -4 \sin t \implies x'' = -4 \cos t$
\n $y' = -3 \cos t \implies x'' = -3 \sin t$
\n $\therefore \rho = \frac{(16\sin^2 t + 9\cos t^2 t)^{3/2}}{-4 \sin t (-3\sin t) - 3\cos t (-4\cos t)}$
\n $= \frac{1}{12} (9 \cos t^2 t + 16 \sin^2 t)^{3/2}$
\n $\implies (\rho. 12)^{2/3} = 9 \cos t^2 t + 16 \sin^2 t$

Now, curvature is the reciprocal of radius of curvature. Curvature is maximum $\&$ minimum when ρ is minimum and maximum respectively . For maximum and minimum values;

$$
\frac{d}{dt} (16 \sin^2 t + 9 \cos^2 t) = 0
$$

 \Rightarrow 32 sint cost + 18 cost (–sint) = 0

 \Rightarrow 4 sint cost = 0 \Rightarrow t = 0 & $\frac{\pi}{2}$ At $t = 0$ ie at (4,0) $(12 \rho)^{2/3} = 9$ \Rightarrow 12 $\rho = 9^3$ \Rightarrow $\rho = \frac{9}{4}$ $\frac{9}{4}$ $\therefore \frac{1}{\rho}$ $\frac{1}{\rho} = \frac{4}{9}$ 9 Similarly, at $t = \frac{\pi}{3}$ $\frac{\pi}{2}$ ie at (0,3) $(12 \rho)^{2/3} = 16$ $12\rho = 4^3$ $\rho = 16/3$: $\frac{1}{3}$ $\frac{1}{\rho} = \frac{3}{16}$ $\mathbf{1}$ Hence, the least value is $\frac{3}{16}$ and the greatest value is $\frac{4}{9}$ **Example 8** Find the radius of curvature for \int_{0}^{x} $\frac{x}{a} - \sqrt{\frac{y}{b}}$ $\frac{y}{b}$ = 1 at the points

where it touches the coordinate axes. **Solution:** On differentiating the given , we get

$$
\frac{1}{2\sqrt{ax}} - \frac{1}{2\sqrt{by}} \frac{dy}{dx} = 0
$$

$$
\Rightarrow \frac{dy}{dx} = \sqrt{\frac{by}{ax}} \qquad \qquad \dots \dots (1)
$$

The curve touches the x-axis if $\frac{dy}{dx} = 0$ or $y = 0$ When $y = 0$, we have $x = a$ (from the given eqⁿ)

 \Rightarrow given curve touches x – axis at (a,0)

The curve touches $y - axis$ if $\frac{dx}{dy} = 0$ or $x = 0$ When $x = 0$, we have $y = b$

 \Rightarrow Given curve touches y-axis at (o, b)

$$
\frac{d^2y}{dx} = \sqrt{\frac{b}{a}} \left\{ \sqrt{\frac{b}{a}} \cdot \frac{1}{2x} - \frac{1}{2} \sqrt{\frac{y}{x}} \right\} \quad \{\text{from (1)}\}
$$

At (a,0),
$$
\frac{d^2y}{dx^2} = \frac{1}{2a} \frac{b}{a} = \frac{b}{2a^2}
$$

\n
$$
\therefore \text{ At (a,0), } \rho = \frac{\left(1 + y_1^2\right)^{3/2}}{y_2} = \left(1 + 0\right)^{3/2} \frac{2a^2}{b} = \frac{2a^2}{b}
$$
\nAt (o,b), $\rho = \frac{\left[1 + \left(\frac{dx}{dy}\right)^2\right]^{3/2}}{\frac{d^2x}{dy^2}} = \frac{2b^2}{a}$

5.3 Radius of curvature of Polar curves $r = f(\theta)$ **:**

$$
\rho = \frac{(r^2 + r_1^2)^{3/2}}{2r_1^2 + r^2 - rr_2}
$$
 \t\t \left(where $r_1 = \frac{dr}{d\theta}, r_2 = \frac{d^2r}{d\theta^2}$ \right)

Example 9 Prove that for the cardioide $r = a(1 + \cos \theta)$,

 ρ^2 $\frac{1}{r}$ is const. **Solution:** Here $r = a(1 + \cos \theta)$ \Rightarrow $r_1 = -a$ Sin θ and $r_2 = -a$ cos θ :. $r^2 + r_1^2 = a^2 [(1 + \cos \theta)^2 + \sin^2 \theta] = 2a^2$ $r^2 + 2r_1^2 - rr^2 = a^2[(1 + \cos \theta)^2]$ \overline{c} ($r^2 = \frac{(r^2 + r_1^2)^3}{(r^2 + r_1^2)^3}$ $\frac{\left(r^2+r_1^2\right)^3}{\left(r^2+2r_1^2-rr_2\right)^2} = \frac{8a^6(1+cos\theta)^3}{9a^4(1+cos\theta)^2}$ $\frac{8a^6(1+cos\theta)^3}{9a^4(1+cos\theta)^2} = \frac{8}{9}$ $\frac{8}{9}a^2$ (1+ cos θ \Rightarrow $\rho^2 = \frac{8}{4}$ $\frac{5u}{9}$ r $\therefore \frac{\rho^2}{\sigma}$ $\frac{p^2}{r} = \frac{8}{9}$ $\frac{3a}{9}$ which is a constant.

Example 10 Show that at the point of intersection of the curves $r = a \theta$ and $r \theta = a$, the curvatures are in the ratio 3:1 ($0 < \theta < 2\pi$)

Solution: The points of intersection of curves $r = a \theta \& r \theta = a$ are given by a θ^2 = a or $\theta = \pm 1$ Now for the curve r=a θ we have r₁ = a and r₂ = 0

$$
\therefore \text{ At } \theta = \pm 1, \, \rho = \left[\frac{(r^2 + r_1^2)^{3/2}}{2a^2 + a^2 \theta^2 - 0}\right]_{\theta = \pm 1} = \frac{a(2\sqrt{2})}{3} = \rho_1
$$

For the curve $r \theta = a$,

$$
r_1 = \frac{-a}{\theta^2} \text{ and } r_2 = \frac{2a}{\theta^3}
$$

At $\theta = \pm 1$, $\rho = \left[\frac{\left(\frac{a^2}{\theta^2} + \frac{a^2}{\theta^4}\right)^{3/2}}{\frac{2a^2}{\theta^4} + \frac{a^2}{\theta^2} - \frac{2a^2}{\theta^4}} \right]_{\theta = \pm 1}$, $= 2a\sqrt{2} = \rho_2$

$$
\therefore \frac{\rho_2}{\rho_1} = \frac{2a\sqrt{2}}{2a\sqrt{2/3}} = \frac{3}{1}
$$

$$
\therefore \rho_2 : \rho_1 = 3 : 1
$$

Example 11 Find the radius of curvature at any point (r, θ) of the curve $r^m = a^{\overline{m}} \cos m \theta$

Solution: $r^m = a^m \cos m \theta$

$$
\Rightarrow \text{mlog r} = \text{mlog a} + \text{log cos m } \theta
$$

$$
\Rightarrow \frac{m}{r} \text{r}_1 = -\text{m} \frac{\text{sinm}\theta}{\text{cos} m\theta} \text{ (on differentiating w.r.t. } \theta)
$$

$$
\Rightarrow \text{r}_1 = -\text{r tan m } \theta \quad(1)
$$

Now r₂ = - (r₁ tan m θ + rm sec² m θ)

$$
= r \tan^2 m \theta - rm \sec^2 m \theta \quad (from (1))
$$

$$
\therefore \rho = \frac{(r^2 + r^2 \tan^2 m\theta)^{3/2}}{r^2 + 2r^2 \tan^2 m\theta - r^2 \tan^2 m\theta + r^2 \text{msec}^2 m\theta}
$$

$$
= \frac{r^3 \sec^3 m\theta}{r^2 \sec^2 m\theta + r^2 \text{msec}^2 m\theta} = \frac{r}{m+1} \sec m\theta
$$

Example 12 Show that the radius of curvature at the point (r, θ)

of the curve r² cos2 $\theta = a^2$ is $\frac{r^3}{c^2}$ α

Solution:
$$
r^2 = a^2 \sec 2\theta
$$

\n $\Rightarrow 2rr_1 = 2a^2 \sec 2\theta \tan 2\theta$
\n $\Rightarrow r_1 = r \tan 2\theta$
\nand $r_2 = 2r \sec^2 \theta + r_1 \tan 2\theta$
\n $= 2r \sec^2 2\theta + r \tan^2 2\theta \quad (\because r = r \tan 2\theta)$
\nNow $\rho = \frac{(r^1 + r_1^2)^{3/2}}{2r_1^2 + r^2 - rr_2} \Rightarrow \rho = \frac{((r^2 + r^2 \tan^2 2\theta))^{3/2}}{2r^2 \tan^2 2\theta + r^2 - r^2 (2\sec^2 2\theta + \tan^2 2\theta)}$
\n $= \frac{(r^2 \sec^2 2\theta)^{3/2}}{r^2 (\tan^2 2\theta + 1 - 2\sec^2 2\theta - \tan^2 2\theta)}$
\n $= \frac{r^3 \sec^3 2\theta}{r^2 \sec^2 2\theta}$
\n $= r \sec 2\theta$
\n $= r \cdot \frac{r^2}{a^2} = \frac{r^3}{a^2}$

5.4 Radius of curvature at the origin by Newton's method

It is applicable only when the curve passes through the origin and has xaxis or y-axis as the tangent there.

When x-axis is the tangent, then

$$
\rho = \lim_{x \to 0} \frac{x^2}{2y}
$$

When y- axis is the tangent, then

$$
\rho = \lim_{x \to 0} \frac{y^2}{2x}
$$

Example13 Find the radius of curvature at the origin of the curve $x^3y - xy^3 + 2x^2y + xy - y^2$

Solution: Tangent is $x = 0$ ie y–axis, $\rho = \lim_{\nu \to 0} \frac{y^2}{2\nu}$ 2

Dividing the given equation by 2x, we get

$$
\frac{x^3y}{2x} - \frac{xy^3}{2x} + \frac{2x^2y}{2x} + \frac{+xy}{2x} - \frac{-y^2}{2x} + \frac{2x}{2x} = 0
$$

$$
x^3 \left(\frac{y}{2x}\right) - xy \left(\frac{y^2}{2x}\right) + xy + x \left(\frac{y}{2x}\right) - \left(\frac{y^2}{2x}\right) + 1 = 0
$$

Taking limit $y \to 0$ on both the sides, we get $\rho = 1$

Exercise 5A

1. Find the radius of curvatures at any point the curve $y = 4 \sin x - \sin 2x$ at $x = \frac{\pi}{2}$ $\overline{\mathbf{c}}$ Ans $\rho = \frac{1}{4}$ $\frac{1}{4}(5)^3$

2. If ρ_1 , ρ_2 are the radii of curvature at the extremes of any chord of the cardioide $r = a (1 + \cos \theta)$ which passes through the pole, then

$$
\rho_1^1 + \rho_2^2 = \frac{16a^2}{9}
$$

3 Find the radius of curvature of $y^2 = x^2 (a+x) (a-x)$ at the origin

Ans. $a\sqrt{2}$

4. Find the radius of curvature at any point 't' of the curve $x = a$ (cost + log tan t/2), $y = a \sin t$

Ans. a cos*t*

5. Find the radius of curvature at the origin, for the curve $x^3 - 3x^2y + 4y^3 + y^2 - 3$

Ans. $\rho = 3/2$

6. Find the radius of curvature of $y^2 = \frac{4a^2(2a-x)}{a-x}$ $\frac{2a-x}{x}$ at a point where the curve meets $x - axis$

Ans. $\rho = a$

- 7. Prove the if ρ_1 , ρ_2 are the radii of curvature at the extremities of a focal chord of a parabola whose semi latus rectum is *l* then $)^{-2/3} + (\rho_2)^{-2/3} = (l)^{-1}$
- 8. Find the radius of curvature to the curve $r = a (1 + \cos \theta)$ at the point where the tangent is parallel to the initial line.

Ans.
$$
\rho = \frac{2}{\sqrt{3}}
$$
. a

9. For the ellipse $\frac{x^2}{z^2}$ α y^2 $\frac{y^2}{b^2}$ = 1, prove that $\rho = \frac{a^2 b^2}{p^3}$ $\frac{b}{p^3}$ where p is the perpendicular distance from the centre on the tangent at (x,y).